STANDARD FIVE

MATHEMATICS

REVIEW BOOKLET

Curriculum Planning and Development Division
(May 2017)

NOTES TO STUDENTS

- The booklet highlights some important facts that students are required to know in Mathematics through their preparation for the SEA, as prior knowledge for Form One.
- The booklet can be used as a resource for revision by students as they transition from Upper Primary to Form One.
- This booklet is not to replace the teaching of concepts, procedures and problem solving if reinforcement of these skills is needed by students.
- Examples/illustrations are provided.

Contributors: Hazra Baksh, Barrackpore A.S.J.A. Primary
Vernon Birbal, South Oropouche Government Primary
Nicole Harris-Knudsen, Curriculum Coordinator (Ag.) - Mathematics
Andrea Khan, VOS Government Primary
Lyndon Lewis, Arima Boys' R.C. Primary
Richard Morealy, Carapichaima R.C. Primary
Nicholas Nanan, San Fernando Boys' Government Primary
Jacqueline Pariag, Curriculum Officer - Mathematics
Christine Rambaran, Longdenville Presbyterian Primary
Donald Somai, Cedros Government Primary
Clarine Stewart, Vance River R.C. Primary

Edited by: Nicole Harris-Knudsen, Curriculum Coordinator (Ag.) - Mathematics Jacqueline Pariag, Curriculum Officer - Mathematics

Contents

A. NUMBER - Whole Numbers 1
A. NUMBER - Fractions 16
A. NUMBER - Decimals 27
A. NUMBER - Approximation and Computational Estimation 35
A. NUMBER - Percent 39
B. MEASUREMENT - Money 43
B. MEASUREMENT - Perimeter 55
B. MEASUREMENT - Area 61
B. MEASUREMENT - Volume 63
B. MEASUREMENT - Mass 67
B. MEASUREMENT - Time 68
C. GEOMETRY - Angles and Lines 70
C. GEOMETRY - Plane Shapes 72
C. GEOMETRY - Solids 74
C. GEOMETRY - Symmetry 79
C. GEOMETRY - Slides, Flips and Turns 80
D. STATISTICS 81
Mathematics Facts 89

| Facts to Remember | Illustration/ Example |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A number can be represented in words and numerals. | |
| e.g. | |
| Numeral: | |
| 45678 | |

Facts to Remember	Illustration/ Example			
Place value is the position of the digit in the numeral. It is represented by columns on the place value chart. The value is the worth of the digit. e.g. The numeral $7 \underline{89}$ The place value of the digit 8 is tens. The value of the digit 8 is eighty (80).	Example: 1245			
	Thousands 1	Hundreds 2	Tens 4	$\begin{gathered} \hline \text { Units or } \\ \text { Ones } \\ 5 \\ \hline \end{gathered}$
				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
	place value of 5 is ones $:$ value of 5 is 5 place value of 4 is tens $:$ value of 4 is 40 place value of 2 is hundreds $:$ value of 2 is 200 place value of 1 is thousands $:$ value of 1 is 1000			
Ascending Order To arrange numbers in ascending order, place them from smallest (first) to largest (last).	Place 17, 5, 9 and 8 in ascending order. Answer: 5, 8, 9, 17 Example: Place $3,1,19,12,9,2$ and 7 in ascending order. Answer: 1, 2, 3, 7, 9, 12, 19			
Descending Order To arrange numbers in descending order, place them from largest (first) to smallest (last).	Place 17, 5, 9 and 8 in descending order. Answer: 17, 9, 8, 5 Example: Place $3,1,19,12,9,2$ and 7 in descending order. Answer: 19, 12, 9, 7, 3, 2, 1			

Facts to Remember	Illustration/ Example
Subtraction on the number line	Example:
When subtracting on a number line, move to the left or move backward.	$6-4=2$
	Begin at 6, then move 4 steps backward.
	Answer: 2

Facts to Remember	Illustration/ Example		
Division can be represented by grouping or partitioning.	Example: Divide 4707 by 32 We are dividing facts for 32: $1 \times 32=32$	32. Here are som $4 \times 32=128$	multiplication $7 \times 32=224$
	$32 \lcm{01707}$ $\begin{array}{l}47 \\ -32\end{array}$ 15	$\begin{aligned} & 32 \begin{array}{r} 014 \\ 4707 \\ -32 \\ \hline 150 \\ -128 \\ \hline 22 \end{array} \end{aligned}$	
	47 hundreds : $32=100$ sets of 32 with a remainder of 15 hundreds.	$\begin{aligned} & 150 \text { tens } \div 32 \\ & =40 \text { sets of } 32 \\ & \text { with a } \\ & \text { remainder of } \\ & 22 \text { tens } \end{aligned}$	$227 \div 32=7$ sets of 32 with a remainder of 3
	4707 is the dividend 32 is the divisor 147 is the quotient 3 is the remainder		
Zero divided by any number equals zero.	Example:$\frac{0}{5}=0$		
Any number divided by itself equals 1 , except the number 0 .	Example: $\begin{aligned} & 1 \div 1=1 \\ & 2 \div 2=1 \\ & 3 \div 3=1 \\ & 10 \div 10=1 \end{aligned}$		

Facts to Remember	Illustration/ Example
In multi-step word problems, one or more steps must be solved in order to get the information needed to solve the final question.	Example: Jason played three games at the mall. He won 33 tickets from Basketball Hoops and 18 tickets from Air Hockey. He won three times the number of tickets from Car Racing as he did from Air Hockey. How many tickets did Jason win altogether? Solution 1: No. of tickets won from Basketball Hoops $=33$ No. of tickets won from Air Hockey $=18$ Step 1: No. of tickets won from Car Racing $=18 \times 3=54$ Step 2: Total number of tickets won $=$ Tickets from Basketball Hoops and Air Hockey and Car Racing $=33+18+54=105$ Solution 2: Step 1: No. of tickets won in Air Hockey \& Car Racing $=18 \times 4=72$ Step 2: Total number of tickets won $=$ Air Hockey and Car Racing Tickets + Basketball Hoops Tickets $=72+33=105$ Answer: Jason won 105 tickets altogether.
	Example: Marcus had 600 marbles. He gave away 175 marbles and put the remaining marbles equally into 5 bags. How many marbles were there in each bag? Solution: Step 1: $600-175=425$ He had 425 marbles left. Step 2: $425 \div 5=85$ There were 85 marbles in each bag. Answer: Each bag had 85 marbles.

The sequence of square numbers is shown below: $1,4,9,16,25,36, \ldots$

The square number pattern is shown below:

$$
\begin{aligned}
1 & =1^{2} \\
4 & =1 \\
9 & =2^{2} \\
=3^{2} & =1+3 \\
16 & =4^{2} \\
25 & =1+3+5+7 \\
35 & =5^{2}=1+3+5+7+9 \\
36 & =1+3+5+7+9+11
\end{aligned}
$$

The rule for the pattern or sequence is the sum of the odd numbers.

Illustration/ Example
 Example:

$4 \times 4=16$, so 16 is a square number

Square Numbers

$$
\begin{aligned}
& 1^{2}=1 \times 1 \ldots \ldots .1^{2}=1 \\
& 2^{2}=2 \times 2 \ldots \ldots .2^{2}=4 \\
& 3^{2}=3 \times 3 \ldots \ldots 3^{2}=9 \\
& 4^{2}=4 \times 4 \ldots \ldots .4^{2}=16 \\
& 5^{2}=5 \times 5 \ldots \ldots .5^{2}=25 \\
& 6^{2}=6 \times 6 \ldots \ldots .6^{2}=36 \\
& 7^{2}=7 \times 7 \ldots \ldots .7^{2}=49 \\
& 8^{2}=8 \times 8 \ldots \ldots 8^{2}=64 \\
& 9^{2}=9 \times 9 \ldots \ldots .9^{2}=81 \\
& 10^{2}=10 \times 10 \ldots \ldots .10^{2}=100 \\
& 11^{2}=121 \\
& 12^{2}=144 \\
& 13^{2}=169 \\
& 14^{2}=196 \\
& 15^{2}=225 \\
& 16^{2}=256 \\
& 17^{2}=289 \\
& 18^{2}=324 \\
& 19^{2}=361 \\
& 20^{2}=400 \\
& 30^{2}=900 \\
& 40^{2}=1600 \\
& 50^{2}=2500
\end{aligned}
$$

Facts to Remember	Illustration/ Example
The square root of a number is that number when multiplied by itself would give the original number. $\sqrt{ }$ is the symbol used for the square root. e.g. $2^{2}=4, \text { so } \sqrt{4}=2$ $\sqrt{4}$ is read as "the square root of 4 ". $\sqrt{9}$ is read as "the square root of 9 ".	A square root of $\mathbf{9}$ is 3 , because the product of $\mathbf{3}$ and itself is 9 . $3^{2}=9, \text { so } \sqrt{9}=3$
Square Roots	Examples:

Facts to Remember	Illustration/ Example
A sequence or pattern is a set of numbers or objects that are in a particular order based on a rule. e.g. $3,8,13,18,23,28,33,38, \ldots$ This sequence has a difference of 5 between each number. The sequence or pattern rule is "add 5 ".	Example: $27,24,21,18, \ldots$ Pattern rule: "subtract 3" 27, $\begin{aligned} & \mathbf{2 4}=27-\mathbf{3}, \\ & \mathbf{2 1}=24-\mathbf{3}, \\ & \mathbf{1 8}=21-\mathbf{3}, \\ & \mathbf{1 5}=18-\mathbf{3} \end{aligned}$ The missing number in the sequence is $\mathbf{1 5}$. Example: $3,4,6,9,13,18$ \qquad Pattern rule: Add 1 to the first number, add 2 to the second number, add 3 to the third number, etc. $\begin{aligned} & \mathbf{3}, \\ & \mathbf{4}=3+\mathbf{1}, \\ & \mathbf{6}=4+\mathbf{2}, \\ & \mathbf{9}=6+\mathbf{3}, \\ & \mathbf{1 3}=9+\mathbf{4}, \\ & \mathbf{1 8}=13+\mathbf{5} \end{aligned}$ The missing number in the sequence is 24 . Example: $64,32,16,8, \ldots$ Pattern rule: Divide by 2 64, $\begin{aligned} & \mathbf{3 2}=64 \div \mathbf{2} \\ & \mathbf{1 6}=32 \div \mathbf{2}, \\ & \mathbf{8}=16 \div \mathbf{2}, \\ & \mathbf{4}=8 \quad \div \mathbf{2} \end{aligned}$ The missing number in the sequence is 4 .

A. NUMBER - Fractions					
Facts to Remember	Illustration/ Example				
A fraction is a part of a whole. ${ }^{\text {a }}$,					
For the purpose of naming fractions, wholes are divided into equal parts.	Wholes divided into equal parts	Number of shaded parts	Number of equal parts in the whole	Fraction shaded	Name of fraction
$\frac{1}{2} \rightarrow \text { numerator } \quad \rightarrow \text { how many parts }$		1	4	$\frac{1}{4}$	One quarter one - fourth
		3	8	$\frac{3}{8}$	Three - eighth
Here are some of the most common fractions, and how to call them:		1	3	1	One-third
$\frac{1}{2}$ is one-half					
	\square	2	4	$\frac{2}{4}$ or $\frac{1}{2}$	One- half
$\frac{1}{3}$ is one-third					
$\frac{1}{4}$ is one-quarter		2	3	$\frac{2}{3}$	Two - third
$\frac{1}{5}$ is one-fifth and so on		3	4	$\frac{3}{4}$	$\begin{aligned} & \text { Three - quarters } \\ & \text { Three- fourth } \end{aligned}$
$\frac{3}{7}$ is read as three-sevenths (or 3 out of 7)	D				
A unit fraction is a fraction where the		7	8	$\frac{7}{8}$	Seven - eighth
E.g. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}$ and so on.		4	4	${ }_{4}^{4}=1$	$\begin{aligned} & \text { Whole } \\ & \text { Or } \\ & \text { Four-fourth } \end{aligned}$
		0	4	$\frac{0}{4}=0$	$\begin{gathered} \text { Zero } \\ \text { Or } \\ \text { Zero - fourth } \end{gathered}$

Facts to Remember	Illustration/ Example
You can create equivalent fractions by multiplying or dividing both top and bottom by the same number.	The rule to remember is: "Change the bottom using multiply or divide, and the same to the top must be applied" Here is why those fractions are really the same: Here are some more equivalent fractions, this time by dividing:
Ordering Fractions	Example:
When the numerator stays the same, and the denominator increases, the value of the fraction decreases, i.e. the fraction is smaller. When the numerator stays the same, and the denominator decreases, the value of the fraction increases, i.e. the fraction is larger.	$\frac{1}{2}, \frac{1}{4}, \frac{1}{7}, \frac{1}{10}$ The fraction is getting smaller. $\frac{3}{7}, \frac{3}{6}, \frac{3}{5}, \frac{3}{4}$ The fraction is getting larger.

Facts to Remember	Illustration/ Example
We can compare two fractions to discover which is larger or smaller. There are two main ways to compare fractions: 1) Using the same denominator. $\begin{gathered} \text { Compare } \frac{3}{4} \& \frac{2}{3} \\ \begin{array}{c} 3 \times 3 \\ 4 \times 3 \end{array}=\frac{9}{12} \quad \frac{2 \times 4}{3 \times 4}=\frac{8}{12} \\ \frac{9}{12}>\frac{8}{12} \end{gathered}$ 2) Using decimal fractions	Example: Which is bigger: $\frac{3}{8}$ or $\frac{5}{12}$? Solution: Make the denominators the same using equivalent fractions $\frac{9}{24}$ is smaller than $\frac{10}{24}$, because 9 is smaller than 10 . Answer: $\frac{5}{12}$ is the larger fraction. Example: $\frac{3}{8}=0.375$ and $\frac{5}{12}=0.4166$ so $\frac{5}{12}$ is bigger.
There are three types of fractions: 1) Proper Fraction (Common Fraction) - A fraction with a numerator smaller than its denominator. The value of the fraction is always less than one or a whole.	Example: Smaller \longrightarrow Larger \longrightarrow
2) Improper Fraction- A fraction with its numerator larger than its denominator. Improper fractions always have a value greater than 1.	$\begin{aligned} \begin{array}{c} \text { Larger } \\ \text { (or equal }) \\ \text { (or equaller } \end{array} & \rightarrow \end{aligned} \frac{9}{5}$
3) Mixed Number - A value expressed using both a whole number and a proper fraction e.g. $1 \frac{1}{2}$ 1 is the whole number and $\frac{1}{2}$ is the fraction.	$2 \frac{1}{3}$ Mixed Number

Facts to Remember	Illustration/ Example
Conversion of an Improper Fraction to a Mixed Number To convert an improper fraction to a mixed number, follow these steps: - Find the number of wholes - Express the remainder as a fraction	Example: Convert $\frac{11}{4}$ to a mixed number. Solution: $\frac{11}{4}=\frac{4}{4}+\frac{4}{4}+\frac{3}{4}=1+1+\frac{3}{4}=2 \frac{3}{4}$ $\frac{11}{4}=2$ wholes with a remainder of $\frac{3}{4}$ OR $\begin{aligned} \text { Denominator } \rightarrow 4 \begin{array}{l} \frac{2}{1} \\ \\ \\ \\ -\frac{-8}{3} \end{array} \rightarrow \text { Whole number } \\ \\ \text { Remainder is } \frac{3}{4} \end{aligned}$ Answer: $2 \frac{3}{4}$
Conversion of a Mixed number to an Improper Fraction To convert a mixed number to an improper fraction, follow these steps: - Express wholes as fractions - Simplify the numerator - State the result Changing a Mixed Fraction to an Improper Fraction $\begin{aligned} 5 \frac{1}{4} & =5+\frac{1}{4} \\ & =\frac{4}{4}+\frac{4}{4}+\frac{4}{4}+\frac{4}{4}+\frac{4}{4}+\frac{1}{4} \\ & =\frac{5 \times 4+1}{4} \\ & =\frac{21}{4} \end{aligned}$	Example: Convert $3 \frac{2}{5}$ to an improper fraction. Solution: $\begin{aligned} 3 \frac{2}{5} & =3+\frac{2}{5} \\ & =\frac{5}{5}+\frac{5}{5}+\frac{5}{5}+\frac{2}{5}(\text { express wholes as fractions }) \\ & =\frac{5+5+5+2}{5}=\frac{(3 \times 5)+2}{5} \\ & =\frac{17}{5}(\text { simplify the numerator }) \end{aligned}$ Answer: $\frac{17}{5}$

Facts to Remember	Illustration/ Example
Addition of fractions with the same denominator Add the numerator and keep the same denominator.	Example: Adding sevenths Three sevenths add two sevenths = five sevenths
Subtraction of fractions with the same denominator Subtract the numerator and keep the denominator.	Example: Subtracting quarters Three quarters subtract two quarters $=$ one quarter $\frac{3}{4}-\frac{2}{4}=\frac{1}{4}$
All whole numbers can be expressed as a fraction with a denominator of 1 .	Example: Find $\frac{5}{6} \times 24$. Solution: $\begin{aligned} & \frac{5}{6} \times 24 \\ & =\frac{5}{6} \times \frac{24}{1} \\ & =\frac{5}{6_{1}} \times \frac{z 4^{4}}{1} \\ & =\frac{5 \times 4}{1 \times 1} \\ & =\frac{20}{1} \\ & =20 \end{aligned}$ Answer: 20

Facts to Remember	Illustration/ Example
Expressing one number as a fraction of another number	Example: What fraction of 60 is 45 ? Solution: $\frac{45}{60} \rightarrow \text { write } 45 \text { as the numerator of the fraction }$ Reduce the fraction to its lowest term. $\begin{gathered} \frac{45}{60}=\frac{45 \div 15}{60 \div 15}=\frac{3}{4} \\ \text { OR } \\ \frac{45}{60}=\frac{45 \div 5}{60 \div 5}=\frac{9}{12} \\ \frac{9}{12}=\frac{9 \div 3}{12 \div 3}=\frac{3}{4} \end{gathered}$
Finding the whole given a fractional part Draw diagrams to show information given about the fraction of a number.	Example: $\frac{\mathbf{2}}{\mathbf{5}}$ of a number is 20 . What is the number? $\frac{2}{5}$ of a number is 20. Therefore $\frac{\mathbf{1}}{5}$ of the number is 10 . The whole or $\frac{5}{5}$ of the number is 50 . Answer: The number is 50 .

Facts to Remember
You can find the whole number given a fraction of the number using bar modeling. e.g. $\frac{3}{5}$ of a group of children were girls. If there were 24 girls, how many children were there in the group?
There were 40 children in the group. 1 units $=24 \div 3=8$ 5 units $=5 \times 8=40$

Illustration/ Example
 Example:

Three-eighths of the town voted in an election. If 120 of the people voted, how many people lived in the town?

Solution:

Step 1. Draw the whole divided into eighths:

Step 2. Represent $\frac{3}{8}$: For $\frac{3}{8}$, bracket 3 parts, then bracket the remaining parts.

Step 3. Divide 120 by 3 to find $\frac{1}{8}$ of the people who voted. $120 \div 3=40$, which is $\frac{1}{8}$ of the people who voted

| $\mathbf{4 0}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Step 4. Add all the parts to find the whole group:

$$
40+40+40+40+40+40+40+40=320
$$

Answer: 320 people lived in the town.

Other examples of worded problems are:

1. Kareem said that four fifths of his age is 16 years. How old is Kareem?
2. Charlie bought a book for $\$ 25$.

He paid $\frac{5}{6}$ of the regular price.
What was the regular price of the book?

Facts to Remember	Illustration/ Example
Multiplication of Fractions	Example: $\frac{1}{3} \times \frac{9}{16}$
Three-steps to multiply fractions:	
Step 1. Multiply the numerators	
Step 2. Multiply the denominators	$\frac{1}{3} \times \frac{9}{16}=\frac{1 \times 9}{}=\frac{9}{-}$
Step 3. Simplify the fraction if needed.	Step 2. Multiply the denominators: $\frac{1}{3} \times \frac{9}{16}=\frac{1 \times 9}{3 \times 16}=\frac{9}{48}$
OR	Step 3. Simplify the fraction:
	$\frac{9 \div 3}{48 \div 3}=\frac{3}{16}$ (Divide numerator and denominator by 3)
Reduce the fractions and then multiply numerators and denominators.	Example:
	$\frac{5}{6} \times \frac{2}{3}=\frac{5}{6_{3}} \times \frac{z^{1}}{3}=\frac{5 \times 1}{3 \times 3}=\frac{5}{9}$
	Example:
	$\frac{5}{6} \times \frac{9}{10}=\frac{5^{1}}{6_{2}} \times \frac{9^{3}}{10_{2}}=\frac{1 \times 3}{2 \times 2}=\frac{3}{4}$
Make the whole number a fraction, by putting it over 1.	Example: $3 \times \frac{2}{9}$
Think of the whole number as being the numerator and 1 as the denominator:	Solution:
Example:	Step 1: Put the whole over 1.
	$\frac{3}{1} \times \frac{2}{9}$
$5=\frac{5}{1}$	Step 2: Multiply numerators and denominators. $\frac{3 \times 2}{1 \times 9}=\frac{6}{9}=\frac{2}{3}$
	Answer: $\frac{2}{3}$

Division of Fractions

$\frac{1}{2}$		$\frac{1}{2}$	
$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$

$$
\begin{gathered}
\frac{1}{2} \div \frac{1}{4}=2\left(\text { two } \frac{1}{4} \text { in one-half }\right) \\
\frac{\mathbf{1}}{2} \times \frac{4}{1}=\frac{4}{2}=\mathbf{2}
\end{gathered}
$$

$\frac{1}{3}$		$\frac{1}{3}$		$\frac{1}{3}$	
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

$$
\begin{gathered}
\frac{2}{3} \div \frac{1}{6}=4\left(\text { four } \frac{1}{6}\right. \text { in two-thirds) } \\
\\
\frac{2}{3} \times \frac{6}{1}=\frac{\mathbf{1 2}}{\mathbf{3}}=\mathbf{4}
\end{gathered}
$$

Look at the pattern before we state the rule:

Step 1. Turn the divisor (2 $2^{\text {nd }}$ fraction) upside down, i.e. invert.

Step 2. Multiply the $1^{\text {st }}$ fraction by the $2^{\text {nd }}$ one.
Step 3. Simplify the answer, if needed.

Example:

$\frac{2}{3} \div \frac{4}{5}$
Solution:
Step 1. Turn the divisor upside down:

$$
\frac{4}{5} \text { becomes } \frac{5}{4}
$$

Step 2. Multiply the $1^{\text {st }}$ fraction by the $2^{\text {nd }}$ one:

$$
\frac{2}{3} \times \frac{5}{4}
$$

(multiply the numerators and the denominators)

$$
\frac{2}{3} \times \frac{5}{4}=\frac{2 \times 5}{3 \times 4}=\frac{10}{12}
$$

Step 3. Simplify the fraction:

$$
\frac{10}{12}=\frac{5}{6}
$$

Answer: $\frac{5}{6}$

Facts to Remember	Illustration/ Example
Word problems involving fractions	Example:
	Martha spent $\frac{4}{9}$ of her allowance on food and shopping.
	What fraction of her allowance did she have left?
	Solution:
	$1-\frac{4}{9}=\frac{9}{9}-\frac{4}{9}=\frac{5}{9}$
	Answer: She had $\frac{5}{9}$ of her allowance left.
	Example:
	Sam had 120 teddy bears in his toy store. He sold $\frac{2}{3}$ of them at $\$ 12$ each.
	How much money did he receive?
	Solution:
	Step 1. Calculate the number of teddy bears sold. $\frac{2}{3} \times \frac{120}{1}=\frac{2}{3_{1}} \times \frac{120^{40}}{1}=\frac{80}{1}$
	He sold 80 teddy bears.
	Step 2. Calculate how much money he received.
	$80 \times 12=960$
	He received \$960.
	Answer: Sam received \$960

Facts to Remember	Illustration/ Example
A factor tree breaks down a number into prime	Example:
	Make a factor tree for the number 60
Prime factorisation is expressing a number as a product of its prime factors. Note that the product of the prime factorization is the original number.	Step 1. Begin by writing down the number 60 .
	Step 2. Below it write down any factor pair whose product is 60 . For example, write down 6 and 10 on the branches because $6 \times 10=60$.
	Step 3.
	Step 4. Next repeat the process with the new branches. Since $2 \times 3=6$ and $5 \times 2=10$. Write the factors underneath their respective branches. Circle the prime numbers.
	Prime Factorization: $2 \times 2 \times 3 \times 5=60$

A. NUMBER - Decimals

Facts to Remember

A decimal number is one which has whole number values and numbers with a fractional value (less than 1).

The whole number is separated from the fractional number by a decimal point.

The first digit after the decimal point is in the tenths place value.

The second digit after the decimal point is in the hundredths place value.

The third digit after the decimal point is in the thousandths place value.

In consumer arithmetic, the decimal point is also used to separate dollars from cents in money.

Illustration/ Example

As you move to the right in the place value chart, each number place is divided by 10 .

Example:

$1000 \div 10=100$
$100 \div 10=10$
$10 \div 10=1$
This is also true for digits to the right of the decimal point.

Example:

$1 \div 10=\frac{1}{10}$ or 0.1 (one tenth)
$\frac{1}{10} \div 10=\frac{1}{100}$ or 0.01 (one hundredth)

Example:

In the number shown above:
There are 5 tenths, having a value of 0.5 or $\frac{5}{10}$
There are 9 hundredths, having a value of 0.09 or $\frac{9}{100}$

Examples:

$\$ 1.50$ represents one dollar and fifty cents
$\$ 5.25$ represents five dollars and twenty-five cents
$\$ 175.00$ represents one hundred and seventy-five dollars

A. NUMBER - Decimals
Decimal Fractions in Expanded Notation

Example:

Express 17.59 using expanded notation.

$$
\begin{aligned}
& 17.59=(1 \times 10)+(7 \times 1)+\left(5 \times \frac{1}{10}\right)+\left(9 \times \frac{1}{100}\right) \\
& =10+7+0.5+0.09 \\
& \begin{array}{lllllll}
& & \mathbf{T} & \mathbf{O} & \text {. } & \text { th } & \text { hth } \\
10 & & 1 & 0 & . & 0 & 0 \\
7 & & & 7 & . & 0 & 0 \\
0.5 & \text { OR } & & & . & 5 & 0 \\
0.09 & & + & & . & 0 & 9 \\
\hline 17.59 & & \mathbf{1} & \mathbf{7} & . & \mathbf{5} & \mathbf{9}
\end{array}
\end{aligned}
$$

Answer: $\quad 17.59=10+7+0.5+0.09$

Comparison of decimals

We can use the methods below to compare decimals:

Step 1. Set up a table with the decimal point in the same place for each number.

Step 2. Put in each number.
Step 3. Fill in the empty squares with zeros.

Step 4. Compare the numbers using the first column on the left.

Step 5. If the digits are equal move to the next column to the right until one digit is larger.

OR
Step 1. Line up the decimal point.
Step 2. Use zeros as place holders
Step 3. Visualize the numbers as whole numbers.

Step 4. Compare the numbers from smallest to largest.

Example:

Put the following decimals in ascending order:

$$
1.5,1.56,0.8
$$

Solution:

Answer:
The ascending order of decimals is $0.8,1.5,1.56$.

Note:

To place numbers in ascending order start with the smallest number first.

To place numbers in descending order start with the largest number first.

Facts to Remember	Illustration/ Example
Multiplication of decimal fractions	Example:
If we look at the answers we see a pattern. We can use the pattern to get a rule for multiplication by decimal fractions.	Tenths multiplied by Whole Numbers 0.4×3 Convert decimal fraction to regular fractions $\begin{aligned} & \frac{4}{10} \times \frac{3}{1}=\frac{12}{10} \\ & \frac{12}{10}=1.2 \end{aligned}$
$0.4 \times 3=1.2$	$0.4 \times 3=1.2$
	Example:
	Hundredths multiplied by Whole Numbers 0.23×5
	Convert decimal fraction to regular fractions $\frac{23}{100} \times \frac{5}{1}=\frac{115}{100}$
	$\frac{115}{100}=1 \frac{15}{100}=1.15$
$0.23 \times 5=1.15$	$0.23 \times 5=1.15$
	Example:
	Tenths multiplied by Hundredths 0.2×0.41
	Convert decimal fraction to regular fractions $\frac{2}{10} \times \frac{41}{100}=\frac{82}{1000}$
	$\frac{82}{1000}=0.082$
$0.2 \times 0.41=0.082$	$0.2 \times 0.41=0.082$
Rule: the number of decimal places in the answer is the total number of decimal places from the numbers that are being multiplied.	

Facts to Remember	Illustration/ Example
	Example: Calculate the product of 3.7×2.8 Solution: Answer: 10.36
Multiplication of decimal fractions by powers of 10 $\times \mathbf{1 0}$ - shift the decimal point 1 place to the right $\times \mathbf{1 0 0}$ - shift the decimal point 3 places to the right $\times \mathbf{1 0 0 0}$ - shift the decimal point 3 places to the right	Example: Multiplication by 10 $\begin{aligned} & 0.5 \times 10=\frac{5}{10_{1}} \times \frac{10^{1}}{1}=\frac{5}{1}=\mathbf{5} \\ & 0.25 \times 10=\frac{25}{100_{10}} \times \frac{10^{1}}{1}=\frac{25}{10}=\mathbf{2 . 5} \end{aligned}$ Multiplication by 100 $\begin{aligned} & 0.31 \times 100=\frac{31}{100_{1}} \times \frac{100^{1}}{1}=\frac{31}{1}=\mathbf{3 1} \\ & 0.15 \times 100=\frac{15}{100_{1}} \times \frac{100^{1}}{1}=\frac{15}{1}=\mathbf{1 5} \end{aligned}$ Multiplication by 1000 $\begin{aligned} & 0.014 \times 1000=\frac{14}{1000_{1}} \times \frac{1000^{1}}{1}=\frac{14}{1}=14 \\ & 0.75 \times 1000=\frac{75}{100_{1}} \times \frac{1000^{1}}{1}=\frac{750}{1}=750 \end{aligned}$

Facts to Remember	Illustration/ Example
Division of a decimal number by a whole number Step 1. Put the decimal point in the same spot as the dividend (the number being divided). Step 2. Continue division just as you would with whole numbers.	Example: Divide 9.1 by 7 . Put the decimal point in the quotient directly above the decimal point in the dividend. $\begin{array}{r} 1.3 \\ 7 \lcm{9} \cdot 1 \\ -\quad 7 . \\ \hline 2 . \\ -\quad 1 \\ -2.1 \\ \hline \end{array}$ Answer: 1.3
Division of a decimal number by another decimal number Step 1. Express as a fraction using the dividend as the numerator and divisor as the denominator Step 2. Multiply by 10 , or 100 , or 1000 , etc. until the divisor becomes a whole number. Step 3. Continue division just as you would with whole numbers. e.g. Find the quotient.	Example: $8.64 \div 1.2$ Solution: Step 1. Express as a fraction: $8.64 \div 1.2=\frac{8.64}{1.2}$ Step 2. Multiply numerator and denominator by 10 : $\frac{8.64 \times 10}{1.2 \times 10}=\frac{86.4}{12}$ Step 3. Answer: 7.2

Facts to Remember	Illustration/ Example
Division of decimal fractions by powers of 10 When dividing a decimal by: $\div \mathbf{1 0}$ - shift the decimal point 1 place to the left $\div \mathbf{1 0 0}$ - shift the decimal point 2 places to the left $\div \mathbf{1 0 0 0}$ - shift the decimal point 3 places to the left	Examples: $3.24 \div 10=0.324$ $2.1 \div 100=0.021$ $310.5 \div 1000=0.3105$
Word problems involving decimal numbers	Example: What is the total length of these three pieces of ribbon: $0.1 \mathrm{~m}, 0.22 \mathrm{~m}$, and 0.38 m ? Solution: $\begin{array}{r} 0 . \\ 0 . \\ 0 \quad 20 \mathrm{~m} \\ +0 . \\ 0 \end{array} \begin{array}{r} 1 \mathrm{~m} \\ \hline 0 . \\ \hline \end{array}$ Answer: The total length is 0.7 m Example: A student earns $\$ 11.75$ per hour for gardening. If she worked 21 hours this month, then how much did she earn? Solution: To solve this problem, we will multiply $\$ 11.75$ by 21. 2 decimal places 0 decimal places 2 decimal places Answer: The student earns \$236.75.

Facts to Remember	Illustration/ Example
Conversion of a Fraction to a Decimal Fraction To convert a fraction to a decimal fraction: Step 1. Find an equivalent base ten fraction. Step 2. Express as a decimal fraction OR Divide the numerator by the denominator.	Example: Convert $\frac{1}{4}$ to a decimal fraction. Solution 1: $\frac{1}{4}=\frac{1 \times 25}{4 \times 25}=\frac{25}{100}=0.25$ Solution 2: Align the decimal point. Keep adding zeros. Answer: 0.25

A. NUMBER - Approximation and Computational Estimation

Facts to Remember	Illustration/ Example
Approximation produces a useful result to get an estimation of the answer. This is called a rough check or guess estimate. Rough estimates can prevent wrong answers for calculations.	
Approximating means rounding.	
You can round up or round down.	

The symbol Ω, means "is approximately equal to".

Rounding Numbers

To round a number use the following steps:
Step 1. Identify the digit of the value to which you are approximating.

Step 2. Look at the digit to the immediate right,

- If it is 5 or more $(5,6,7,8,9)$ round up by adding 1 to the digit on the left.
- If is less than $5(4,3,2,1,0)$ round down.

Step 3. Replace the digits to the right of the rounded value with zeros.

Example:

Round 86 to the nearest 10 .
Solution:
Step 1. 8 is the digit in the place value column to which you are rounding.
Step 2. 6 is more than 5 so round up by adding 1 to the 8 which is the tens digit, so the tens digit is now 9.

Step 3. Replace the ones digit which is 6 with a zero.
Answer: $86 \Omega 90$, to the nearest 10 .

Example:

Round 143 to the nearest 100.
Solution:
Step 1. 1 is the digit in the place value column to which you are rounding.
Step 2. 4 is less than 5 so round down.
Step 3. Replace both the tens digit and the ones digit on the right of the 1 with a zeros.

Answer: $143 \Omega 100$, to the nearest 100 .

Facts to Remember	Illustration/ Example
	Examples:
	$84 \Omega 90$, to the nearest 10
$45 \Omega 50$, to the nearest 10	
$32 \Omega 30$, to the nearest 10	
	$459 \Omega 500$, to the nearest 100
	$398 \Omega 400$, to the nearest 100
	$201 \Omega 200$, to the nearest 100
	$145 \Omega 150$ to the nearest 10
	$145 \Omega 100$ to the nearest 100
	$365 \Omega 370$ to the nearest 10
	$365 \Omega 400$ to the nearest 100
	$726 \Omega 730$ to the nearest 10
	$726 \Omega 700$ to the nearest 100

Facts to Remember	Illustration/ Example
Rounding Decimal Numbers To round a decimal number use the following steps: Step 1. Identify the digit of the value to which you are approximating. Step 2. Look at the digit to the immediate right, - If it is 5 or more $(5,6,7,8,9)$ round up by adding 1 to the digit on the left. - If is less than $5(4,3,2,1,0)$ round down. Rounding to tenths means there is only one digit after the decimal point. Rounding to hundredths means there are only two digits after the decimal point.	Example: What is 1.2735 rounded to the nearest tenth? Solution: Step 1. Identify the digit in the tenths column: $1 .(2) 735$ Step 2. Look at the digit to the immediate right $1 .(2) 735$ The digit " 7 " at the immediate right is more than $\mathbf{5}$, so round up by adding 1 to $2: 2+1=\mathbf{3}$. Answer: 1.3 to the nearest tenth. Example: What is 3.1416 rounded to the nearest hundredth? Solution: Step 1. Identify the digit in the hundredths column: $3.1 \bigcirc 16$ Step 2. Look at the digit to the immediate right $3.1 \bigcirc 16$ The digit " 1 " at the immediate right is less than 5 , so round down. Answer: 3.14 to the nearest hundredth.

A. NUMBER - Percent	
Facts to Remember	Illustration/ Example
Percent means "out of 100 ". The symbol \% means percent.	Example: $\mathbf{2 0 \%}$ means " $\mathbf{2 0}$ out of $\mathbf{1 0 0}$ " or $\frac{\mathbf{2 0}}{\mathbf{1 0 0}}$
To find a percent of a given quantity: Step 1. Express the percent as a fraction Step 2. Multiply the fraction by the quantity Step 3. Simplify	Example: Find 5\% of 80. Solution: $\frac{5^{1}}{100_{5_{1}}} \times \frac{80^{4}}{1}=\frac{4}{1}=4$ Answer: 4
Conversion of a Percent to a Fraction To convert a percent to a fraction: Step 1. Express the percent as a fraction Step 2. Simplify the fraction (reduce it to its lowest terms)	Example: Convert 12% to a fraction. Solution: $12 \%=\frac{12}{100}=\frac{12 \div 4}{100 \div 4}=\frac{3}{25}$ Answer: $\frac{3}{25}$
The whole is 100%. e.g. 25 students in a class 100% of students in the class $=25$ e.g. Joy's allowance is $\$ 150.00$ 100% of Joy's allowance $=\$ 150.00$ e.g. Farmer Joe picks 780 oranges 100% of Farmer Joe's oranges $=780$	Example: If the whole is 20 then 5 out of 20 is the equivalent of 25%. $\frac{5}{20} \times \frac{100}{1}=\frac{5^{1}}{20_{4}} \times \frac{100}{1}=\frac{100}{4}=25 \%$ Example: If the whole is 10 then 2 out of 10 is the equivalent of 20%. $\frac{2}{10} \times \frac{100}{1}=\frac{z^{1}}{10_{5}} \times \frac{100}{1}=\frac{100}{5}=20 \%$

Facts to Remember	Illustration/ Example
Conversion of a Decimal to a Percent To convert a decimal fraction to a percent: Step 1. Express the decimal fraction as a fraction. Step 2. Multiply by 100. Remember: Shortcut for multiplying by 100 is shifting the decimal point two places to the right.	Example: Express 0.1 as a percent. Solution: $0.1 \times 100=\frac{1}{10} \times \frac{100}{1}=\frac{100}{10}=10 \%$ OR $0.1 \times 100=10 \%$ Answer: 10\% Example: Express 0.675 as a percent. Solution: $0.675 \times 100=\frac{675}{1000} \times \frac{100}{1}=\frac{675}{1000_{10}} \times \frac{100^{1}}{1}=\frac{675}{10}=67.5 \%$ OR $0.675 \times 100=67.5 \%$ Answer: 67.5\%
Conversion of a Percent to a Decimal To convert a percent to a decimal: Step 1. Express the percent as a fraction. Step 2. Simplify the fraction (reduce it to its lowest terms). Step 3. Divide the numerator by the denominator.	Example: $10 \%=\frac{10}{100}=\frac{1}{10}=0.1$ Example: $67.5 \%=\frac{67.5}{100}=0.675$

Facts to Remember	Illustration/ Example
Conversion of a Fraction to a Percent	Example:
To convert from a fraction to a percent:	Express $\frac{3}{25}$ as a percentage.
	Solution:
Step 1. Multiply the fraction by 100.	$3 \vee 100^{4}$
Step 2. Include \% symbol.	$\frac{25_{1}}{} \times \frac{1}{1}=12 \%$
OR	OR
Step 1. Convert the fraction to a decimal by dividing the numerator by the denominator	Convert the fraction to a decimal: $\frac{3}{25}=0.12$
Step 2. Then convert the decimal to a percentage by multiplying by 100%. Include \% symbol.	Multiply the decimal by 100 :
	$0.12 \times 100=12 \%$
	Answer: 12\%
Expression of a quantity as a percent of another	Example:
	Peter scored 45 marks out of 60 in a test.
To express one quantity as a percent of another,	Express Peter's score as a percent.
- Make sure that both quantities are	$\text { Percent of mark }=\frac{45}{60} \times 100=\frac{45^{3}}{60_{4}} \times \frac{100}{1}=\frac{3}{4} \times \frac{100}{1}=75 \%$
- Write the given quantity as a fraction of the total - Multiply the fraction by 100 . - Simplify.	Answer: 75\%.
To calculate the whole (or part) given a part expressed as a percent.	Example:
	If 60% of a number is 9 , then what is the number?
	Solution:
	60\% of a number $=9$
	$1 \% \text { of a number }=\frac{9}{60}$
	$100 \% \text { of a number }=\frac{9^{3}}{6 \theta_{20_{1}}} \times \frac{100^{5}}{1}=\frac{15}{1}=15$
	Answer: The number is 15.

Facts to Remember	Illustration/ Example
Word problems involving percent	Example:
	If 5\% of China plays tennis, how many people would you expect to play tennis out of a group of 320 Chinese?
	Solution: Number of tennis players $=5 \%$ $=5 \% \times 320$ $=\frac{5}{100} \times 320$ $=16$
	Answer: 16 people

B. MEASUREMENT - Money	
Facts to Remember	Illustration/ Example
Trinidad and Tobago Currency (not drawn to scale) Dollar Bills Coins	Example: Insert the missing values on the bills and coins required to make $\mathbf{\$ 2 0 . 3 5}$. Answer: Bills: \$5, \$5 and Coins: 5¢, 25ф Insert the missing values on the bills and coins required to make $\mathbf{\$ 3 5 . 7 1}$. Answer: Bills: \$20, $\$ 10$ and Coins: $1 \notin, 50 \not \subset$
A budget	Example: Sam earned \$2500.00 in April. Sam's budget for April: - $\$ 420.00$ at the supermarket - $\$ 150.00$ on electricity - $\$ 100.00$ on gas - $\$ 160.00$ on phone and internet - $\$ 115.00$ on insurance (car, house) - $\$ 650.00$ on rent - $\$ 200.00$ in savings That is a total of \$1795.00. How much money does Sam have left over? Solution: $\$ 2500.00-\$ 1795.00=\$ 705.00$ Answer: Sam has $\$ 705.00$ left over.

Facts to Remember	Illustration/ Example
If an article is sold for more than it cost, then it is said to have been sold at a profit Profit $=$ Selling Price - Cost Price $\text { Profit } \begin{aligned} \% & =\frac{\text { Profit }}{\text { Cost Price }} \times 100 \\ & =\frac{\text { Selling Price }- \text { Cost Price }}{\text { Cost Price }} \times 100 \end{aligned}$ If an article is sold for less than it cost, then it is said to have been sold at a loss. $\begin{aligned} & \text { Loss }=\text { Cost Price }- \text { Selling Price } \\ & \text { Loss } \%=\frac{\text { Cost Price }- \text { Selling Price }}{\text { Cost Price }} \times 100 \end{aligned}$	Example: A store owner bought a shirt for $\$ 10.00$ and sold it for $\$ 13.00$. a) Calculate the profit made on the sale of the shirt. b) Determine the profit percent. Solution: a) Profit $=$ Selling price - Cost price $=\$ 13.00-\$ 10.00=\$ 3.00$ Answer: The profit is $\$ 3.00$ b) $\begin{aligned} \text { Profit } \% & =\frac{\text { Selling Price }- \text { Cost Price }}{\text { Cost Price }} \times 100 \\ & =\frac{\text { Profit }}{\text { Cost Price }} \times 100 \\ & =\frac{3}{10} \times 100=30 \% \end{aligned}$ The profit percent is 30% Example: A vase that cost $\$ 60.00$ was sold for $\$ 50.00$. Find the loss percent. Solution: $\begin{aligned} \text { Loss } & =\text { Cost price }- \text { Selling price } \\ & =\$ 60.00-\$ 50.00=\$ 10.00 \end{aligned}$ $\begin{aligned} \operatorname{Loss} \% & =\frac{\text { Cost Price }- \text { Selling Price }}{\text { Cost Price }} \times 100 \\ & =\frac{\text { Loss }}{\text { Cost Price }} \times 100 \\ & =\frac{10}{60} \times \frac{100}{1}=16 \frac{2}{3} \% \end{aligned}$ Answer: The loss percent is $16 \frac{2}{3} \%$

Facts to Remember	Illustration/ Example
	Example: A car was bought for $\$ 60000.00$ and then sold for $\$ 75$ 000.00. What is the profit percent? Solution: $\begin{aligned} \text { Profit } \% & =\frac{\text { Profit }}{\text { Cost Price }} \times 100 \\ & =\frac{\text { Selling Price }- \text { Cost Price }}{\text { Cost Price }} \times 100 \\ & =\frac{75000-60000}{60000} \times 100 \\ & =\frac{15000}{60000} \times 100=25 \% \end{aligned}$ Answer: The profit percent is 25%.
Value Added Tax or V.A.T. is applied to both goods and services in Trinidad and Tobago and is included in the final price of the product. V.A.T. is charged at a rate of $\mathbf{1 2 . 5 \%}$ - $12.5 \%=\frac{1}{8}$ (for easy calculation) OR - $12.5 \%=\frac{1}{2}$ of 25% (find 25% and then find half of the amount)	Example: Mr. Ram's bill at a restaurant is $\$ 240.00$. V.A.T. of 12.5% is added. How much money must Mr. Ram pay? Solution 1: $\begin{aligned} & 12.5 \%=\frac{1}{8} \\ & \text { V.A.T. }=\frac{1}{8} \times \$ 240=\frac{1}{8_{1}} \times \frac{\$ 240^{30}}{1}=\$ 30 \end{aligned}$ Solution 2: $\begin{aligned} & 25 \% \text { of } 240=\frac{25}{100} \times \frac{\$ 240}{1}=\$ 60 \\ & \begin{aligned} 12.5 \%=\frac{1}{2} \text { of } 25 \% \\ \frac{1}{2} \text { of } \$ 60=\$ 30 \end{aligned} \\ & \begin{aligned} & \text { V.A.T. }=\$ 30 \\ & \text { Total to be paid }=\text { Amount }+ \text { V.A.T. } \\ &=\$ 240.00+30.00 \\ &=\$ 270.00 \end{aligned} \end{aligned}$ Answer: Mr. Ram must pay $\$ 270.00$ in total.

Facts to Remember	Illustration/ Example
Percentage discount is equal to $\frac{\text { Marked Price }- \text { Selling Price }}{\text { Marked Price }} \times 100$	Example: A watch bought for $\$ 160.00$ is sold for $\$ 140.00$. a) Calculate the discount. b) Calculate the percentage discount. Solution: a) Discount $=$ Marked Price - Selling Price $=\$ 160.00-\$ 140.00=\$ 20.00$ Answer: The discount is $\$ 20.00$ $\text { b) Percentage discount: } \begin{aligned} & =\frac{\text { Discount }}{\text { Marked Price }} \times \frac{100}{1} \\ & =\frac{\$ 20.00^{1}}{\$ 160.00_{8}} \times \frac{100}{1} \\ & =12.5 \% \end{aligned}$ Answer: The percentage discount is 12.5%.
	Example: The marked price of a dress is $\$ 400.00$. Anna paid $\$ 300.00$ for the dress. How much discount did she receive? Solution: Discount $=$ Marked Price - Selling Price $=\$ 400.00-\$ 300.00$ $=\$ 100.00$ Answer: Anna received a $\$ 100.00$ discount. Example: The marked price of a lamp is $\$ 300.00$. a) If a 20% discount is given, calculate the sale price. b) If the V.A.T. is charged at 12.5%, calculate the amount of V.A.T. paid on the discounted price. c) Calculate the cost of the lamp.

Facts to Remember
Important Terms related to Wages:
Fortnightly means 2 weeks or 14 days

A wage is the money received for work that is done daily, weekly or fortnightly.

A salary is money received for work done monthly or yearly.

Rate of pay is the amount being paid for the time spent at work.

An hourly rate is the amount of money paid for an hour spent at work.

A daily rate is the amount of money paid for a day spent at work.

Overtime means extra hours worked at a given rate.

Illustration/ Example
 Example:

Mr. Khan works for 5 days a week from 8:00 a.m. to 3:00 p.m. He is paid a rate of $\$ 80.00$ per hour.
a) Calculate his daily wage.
b) Calculate his weekly wage.

Solution:

a) | No. of hours worked | $=7$ hours |
| ---: | :--- |
| Hourly rate | $=\$ 80.00$ |
| Daily Wage | $=\$ 80.00 \times 7$ |
| | $=\$ 560.00$ |

Answer: His daily wage is $\$ 560.00$

b) | No. of days worked per week | $=5$ days |
| ---: | :--- |
| Daily wage | $=\$ 560.00$ |
| Weekly Wage | $=\$ 560.00 \times 5$ |
| | $=\$ 2800.00$ |

Answer: His weekly wage is $\$ 2800.00$

Example:

Fred earns $\$ 20.00$ per hour for a regular 8 hour day. He worked for 12 hours on Monday.

Calculate his total wage for Monday if he is paid at a rate of $\$ 30.00$ per hour for the extra hours of work.

Solution:

No. of regular hours	$=8 \mathrm{hrs}$
Hourly rate	$=\$ 20.00$
Pay for regular hours	$=\$ 20.00 \times 8=\$ 160.00$
Overtime hours	$=12 \mathrm{hrs}-8 \mathrm{hrs}=4 \mathrm{hrs}$
Pay for overtime hours	$=\$ 30.00 \times 4=\$ 120.00$
Total wage for Monday	$=\$ 160.00+\$ 120.00$
	$=\$ 280.00$

Answer: His total wage for Monday is $\$ 280.00$

Facts to Remember
Calculation of Simple Interest
Money deposited in a bank will earn interest at the
end of the year.
Principal (P): Money deposited or borrowed.

Time (T):

Period for which money is borrowed or invested.
It is calculated using years.

Rate (R):

This is the amount you pay for borrowing. It is stated as a percentage.

Simple Interest (SI):

The money earned or the money paid on a loan.
If interest is always calculated on the original principal, it is called simple interest.

To calculate Simple Interest use the formula:

$$
\text { SI }=\text { Principal } \times \text { Rate } \times \text { Time }
$$

OR $\quad \mathbf{S I}=\mathbf{P} \times \mathbf{R} \times \mathbf{T}$
When Rate is expressed as a percentage the formula is often seen as:

$$
\mathbf{S I}=\frac{\mathbf{P} \times \mathbf{R} \times \mathbf{T}}{100}
$$

Amount:

The total of the Principal and the Simple Interest
To calculate the Amount use the formula:

$$
\text { Amount }=\text { Principal }+ \text { Simple Interest }
$$

Illustration/ Example
Example:
Calculate the simple interest on $\$ 460.00$, at 5% per annum for 3 years.

$$
\begin{aligned}
\text { Simple interest } & =\frac{P \times R \times T}{100} \\
& =\frac{\$ 460.00 \times 5 \times 3}{100} \\
& =\$ 69.00
\end{aligned}
$$

Example:

Simon wanted to borrow $\$ 1800.00$ to buy new tyres for his car. He was told he could take a loan for 30 months at 10% simple interest per year.
a) Calculate how much interest the bank will charge.
b) Calculate the Amount he will need to pay the bank.

Solution:
a) $\mathrm{P}=\$ 1800.00 \quad \mathrm{R}=10 \% \quad \mathrm{~T}=\frac{30}{12}=2.5$ years

$$
\mathrm{SI}=\frac{\mathbf{P} \times \mathbf{R} \times \mathbf{T}}{\mathbf{1 0 0}}=\frac{\$ 1800.00 \times 10 \times 2.5}{100}=\$ 450.00
$$

Answer: The bank will charge $\$ 450.00$ in interest.
b) Amount $=$ Principal + Simple Interest
$=\$ 1800.00+\$ 450.00$
$=\$ 2250.00$
Answer: He will need to repay $\$ 2250.00$ to the bank.

Facts to Remember	Illustration/ Example
Comparing Unit Prices can be a good way of finding which choice is the "best buy".	Example: Which are cheaper, 10 pencils for $\$ 4.00$ or 6 pencils for \$2.70? Solution: Find the Unit Cost: - $\$ 4.00 \div 10=\$ 0.40$ per pencil - $\$ 2.70 \div 6=\$ 0.45$ per pencil The lower Unit Cost is the better bargain. Answer: 10 pencils for $\$ 4.00$ are cheaper.

B. MEASUREMENT - Linear Measure	
Facts to Remember	Illustration/ Example
The standard unit for measuring length is the metre. Other units which are used for measuring length are, - millimetre - centimetre - kilometre We can measure how long things are, or how tall, or how far apart they are by using these measures.	A centimetre (cm) is approximately: - the length of a staple - the width of a fingernail - the width of 5 CD's stacked on top of each other - the thickness of a notepad. - the radius (half the diameter) of a one cent coin A metre (m) is approximately: - the width of a doorway - the height of a countertop - five steps up a staircase - the depth of the shallow end of a swimming pool - the width of a dining table - the height of a 5 year old - shoulder to opposite wrist of an adult - outstretched arms of a child - waist high on an adult - one long step of an adult male. A kilometre (km) is approximately: - $2 \frac{1}{2}$ laps around an athletic track - The distance walked in 12 minutes
A non-standard unit is a unit of measure expressed in terms of an object. Non-standard units can be objects such as a shoe, a toothpick, a paper clip or a hand span.	Example: What is the length of the pencil? Answer: The length of the pencil is $\mathbf{5}$ paper clips long.
Conversion Table of Metric measurements for Length	$\begin{aligned} & 10 \text { millimetres }(\mathrm{mm})=1 \text { centimetre }(\mathrm{cm}) \\ & 100 \text { centimetres }=1 \text { metre }(\mathrm{m}) \\ &=1 \text { Kilometre }(\mathrm{Km}) \\ & 1000 \text { metres } \end{aligned}$

Facts to Remember	Illustration/ Example
Two lengths can be compared	Example: How much longer is the line $A B$ than the line $C D$? \bar{A} \bar{B} $\bar{C} \quad \mathrm{D}$ Solution: Length of $A B=6 \mathrm{~cm}$ Length of $C D=2 \mathrm{~cm}$ $6 \mathrm{~cm}-2 \mathrm{~cm}=4 \mathrm{~cm}$ Answer: $A B$ is 4 cm longer than $C D$.
Read and record linear measures using decimal notation.	Example: Four points $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are illustrated below on a ruler:
	cm Record of Distances

Facts to Remember	Illustration/ Example
Solve problems involving addition and subtraction of measures in (a) metres and centimetres (b) kilometres and metres	Example: In the Summer Olympic Games, athletes compete in races of the following lengths: 100 meters, 200 meters, 400 meters, 800 meters, 1500 meters, 5000 meters and 10,000 meters. If a runner were to run in all these races, how many kilometers would he run? 10,000 5,000

Facts to Remember	Illustration/ Example
Solving problems involving measures in metres and millimetres	Example: Coach Kelly brought 32 litres of water to the football game, and she divided the water equally aamong 8 coolers. How much water would each cooler contain, in millimetres?
	Solution: $1 \mathrm{~L}=1000 \mathrm{ml}$ Answer: Each cooler contains 42×1000 millilitres of water. 8

B. MEASUREMENT - Perimeter

Facts to Remember
Perimeter is the distance around a two-
dimensional shape.
In other words, perimeter is the distance around
any flat or plane shape. any flat or plane shape.

A polygon is a shape enclosed by three or more straight sides.

To find the perimeter of a polygon, calculate the sum of all the lengths of its sides.

The perimeter of a square is calculated using the formula,

$$
\begin{gathered}
S+S+S+S \\
O R \\
S \times 4
\end{gathered}
$$

where S is the length of each side.

Illustration/ Example

Example:

length of side $=4 \mathrm{~cm}$
Perimeter of square
$=4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}$
$=16 \mathrm{~cm}$

Example:

A square has a side of length 5 cm .
Find the perimeter of the square.

length of side $=5 \mathrm{~cm}$
Perimeter of Square
$=5 \mathrm{~cm} \times 4$
$=20 \mathrm{~cm}$

Facts to Remember	Illustration/ Example
Rectangle The perimeter of a rectangle is calculated using the formula, $\begin{gathered} \mathrm{L}+\mathrm{L}+\mathrm{W}+\mathrm{W} \\ \mathrm{OR} \\ 2 \mathrm{~L}+2 \mathrm{~W} \end{gathered}$ (opposite sides are equal) where L is the length of the rectangle and W is the width of the rectangle.	Example: Perimeter of rectangle $\begin{aligned} & =7 \mathrm{~cm}+3 \mathrm{~cm}+7 \mathrm{~cm}+3 \mathrm{~cm} \\ & =20 \mathrm{~cm} \end{aligned}$
Trapezium The perimeter of a trapezium is calculated using the formula, Perimeter $=$ length of side $\mathbf{a}+$ length of side \mathbf{b} + length of side $\mathbf{c}+$ length of side \mathbf{d} OR Sum of the lengths of all four sides	Example: Find the perimeter of the trapezium below. Perimeter of trapezium $\begin{aligned} & =10+8+4.3+4.1 \\ & =26.4 \mathrm{~cm} \end{aligned}$

Facts to Remember	Illustration/ Example
Parallelogram	Example:
The perimeter of a parallelogram is calculated using the formula, $\mathrm{a}+\mathrm{b}+\mathrm{a}+\mathrm{b}$ OR $2(\mathrm{a}+\mathrm{b})$	Perimeter of parallelogram $=12 \mathrm{~cm}+7 \mathrm{~cm}+12 \mathrm{~cm}+7 \mathrm{~cm}$ $=38 \mathrm{~cm}$

Facts to Remember	Illustration/ Example
Solving problems involving perimeter (finding unknown sides)	Example: The perimeter of the triangle is 26 cm (not drawn to scale). What is the length of the missing side? Solution: Total length of known sides $=15 \mathrm{~cm}+8 \mathrm{~cm}=23 \mathrm{~cm}$ Length of missing side: $\mathbf{S}=26 \mathrm{~cm}-23 \mathrm{~cm}=3 \mathrm{~cm}$ Answer: The length of the missing side is 3 cm . Example: The perimeter of the square is 6 cm (not drawn to scale). What is the length of each side of the square? Solution: Perimeter $=S+S+S+S=4 \times S=6 \mathrm{~cm}$ $\mathrm{S}=\frac{6}{4}=1.5 \mathrm{~cm}$ Answer: Length of each side of the square is 1.5 cm Example: The perimeter of the rectangle is 36 cm and its length is 12 cm . Calculate the width of the rectangle. Solution: $\begin{aligned} \text { Perimeter }= & \mathrm{W}+12 \mathrm{~cm}+\mathrm{W}+12 \mathrm{~cm}=36 \mathrm{~cm} \\ & 2 \mathrm{~W}+24 \mathrm{~cm}=36 \mathrm{~cm} \\ & 2 \mathrm{~W}=36 \mathrm{~cm}-24 \mathrm{~cm}=12 \mathrm{~cm} \\ & \mathrm{~W}=\frac{12 \mathrm{~cm}}{2}=6 \mathrm{~cm} \end{aligned}$ Answer: The width of the rectangle is 6 cm .

Facts to Remember A circle is a closed curve on a plane surface where all the points on the curve are the same distance from the centre. - A Radius (r) is any straight line from the centre of the circle to a point on the circumference. The plural of radius is radii. - A Diameter (D) is any straight line from one point on the circumference to another point on the circumference that passes through the centre of the circle. The diameter is twice the length of the radius. i.e. Diameter $=2 \times$ Radius OR $\mathbf{D}=\mathbf{2} \times \mathbf{r}$ - The Circumference(C) of a circle is the distance once around the circle $\begin{array}{ll} \circ & \mathbf{C}=\mathbf{2} \times \boldsymbol{\pi} \times \mathbf{r} \\ \circ & \mathbf{C}=\boldsymbol{\pi} \times \mathbf{D} \\ \circ & \boldsymbol{\pi}=\frac{\mathbf{C}}{\mathrm{D}} \\ \circ & \boldsymbol{\pi}=\frac{\mathbf{C}}{2 \times \mathbf{r}} \end{array}$

The perimeter of a circle is its circumference.

- $\mathbf{P i}(\boldsymbol{\pi})$ is approximately equal to $\frac{22}{7}$ or 3.14

Illustration/ Example
 Example:

Calculate the circumference of the circle of diameter 7 cm shown below.

Solution:
Circumference $=\pi \times$ Diameter

$$
\begin{aligned}
& =\frac{22}{7} \times \frac{7}{1} \\
& =22 \mathrm{~cm}
\end{aligned}
$$

Answer: The circumference is 22 cm .

Example:

If you walk around a circle which has a diameter of 49 m , how far will you walk?

Solution:

The distance walked will be the circumference.
Circumference $=\pi \times$ Diameter

$$
\begin{aligned}
& =\frac{22}{7_{1}} \times \frac{49^{7} \mathrm{~m}}{1} \\
& =154 \mathrm{~m}
\end{aligned}
$$

Answer: The distance you will walk is 154 m .

Facts to Remember	Illustration/ Example
Solve problems involving perimeter of polygons	Example: What is the perimeter of the shape below? Solution: 12 cm Divide the shape into a rectangle and a semicircle. Sum of lengths of the rectangular section: $=12 \mathrm{~cm}+7 \mathrm{~cm}+12 \mathrm{~cm}=31 \mathrm{~cm}$ (Be careful when adding sides, there are only three sides to be added.) Circumference of circle $=\pi \times D$ $=\frac{22}{7} \times \frac{7}{1}=22 \mathrm{~cm}$ Length of curved side $=$ Length of semicircle $=22 \mathrm{~cm} \div 2=11 \mathrm{~cm}$ Sum of lengths of the rectangular section + Length of semicircle: $=31 \mathrm{~cm}+11 \mathrm{~cm}=42 \mathrm{~cm}$ Answer: Perimeter of the shape is 42 cm . Example: The hexagon has a perimeter of 36 cm . What is the length of one side of the hexagon if all sides are equal? Solution: $\begin{aligned} \text { Perimeter } & =\mathrm{S}+\mathrm{S}+\mathrm{S}+\mathrm{S}+\mathrm{S}+\mathrm{S}=36 \mathrm{~cm} \\ 6 \mathrm{~S} & =36 \mathrm{~cm} \\ \mathrm{~S} & =\frac{36 \mathrm{~cm}}{6}=6 \mathrm{~cm} \end{aligned}$ Answer: The length of one side of the hexagon is 6 cm .

B. MEASUREMENT - Area	
Facts to Remember	Illustration/ Example
Area and its units	Example:
The area of a shape is the total number of square units that fill the shape. The unit of measure for area is the square metre: $1 \mathrm{~m} \times 1 \mathrm{~m}=1 \mathrm{~m}^{2}$	A square metre is about: - half the area of a doorway - the area of a door is approximately $2 \mathrm{~m}^{2}$ (approximately $2 \mathrm{~m} \times 1 \mathrm{~m}$).
The square centimetre, $1 \mathrm{~cm} \times 1 \mathrm{~cm}=\mathbf{1 \mathbf { c m } ^ { 2 }}$, is also used as a unit to measure smaller areas.	Example: The size of a dollar bill is approximately $112 \mathrm{~cm}^{2}$ (approximately $16 \mathrm{~cm} \times 7 \mathrm{~cm}$).
Square	Example:
	A square has a side of length 5 cm . Find the area of the square.
$\text { Area of Square }=S \times S=S^{2}$	5 cm
	length of side $=5 \mathrm{~cm}$ Area of Square $=5 \mathrm{~cm} \times 5 \mathrm{~cm}=25 \mathrm{~cm}^{2}$
	Answer: Area of Square is $25 \mathrm{~cm}^{2}$
Rectangle	Example:
	A rectangle has a length of 9 cm and a width of 4 cm . Find the area of the rectangle.
	L represents the length of the rectangle
B represents the width of the rectangle	$\mathrm{L}=9 \mathrm{~cm}$ and $\mathrm{B}=4 \mathrm{~cm}$
Area of Rectangle $=\mathrm{L} \times \mathrm{B}$	$\begin{aligned} \text { Area of Rectangle } & =9 \mathrm{~cm} \times 4 \mathrm{~cm} \\ & =36 \mathrm{~cm}^{2} \end{aligned}$ Answer: Area of rectangles is $36 \mathrm{~cm}^{2}$

Facts to Remember	Illustration/ Example
	Example: The floor of a room shown below has to be covered with 12 cm square tiles. How many tiles will be needed to cover the entire area of the floor? Solution: Area of the floor $=L \times B=12 \mathrm{~m} \times 6 \mathrm{~m}=72 \mathrm{~m}^{2}$ $1 \mathrm{~m}^{2}=10000 \mathrm{~cm}^{2}$ So $72 \mathrm{~m}^{2}=72 \times 10000 \mathrm{~cm}^{2}=720000 \mathrm{~cm}^{2}$ Area of 1 square tile $=12 \times 12 \mathrm{~cm}^{2}=144 \mathrm{~cm}^{2}$ No. of tiles needed to cover floor $=\frac{720000}{144}=5000$ tiles OR Computation can be done as follows: $\frac{1200 \times 600}{12 \times 12}=100 \times 50=5000 \text { tiles }$
Triangle b is the base of the triangle h is the height of the triangle Area of a triangle is : $\frac{\mathrm{b} \times \mathrm{h}}{2}$	Example: A triangle has a height of 3 cm and a base of 4 cm . Find the area of the triangle. $\begin{aligned} \text { Area } & =\frac{\mathrm{b} \times \mathrm{h}}{2} \\ & =\frac{1}{2} \times 4 \mathrm{~cm} \times 3 \mathrm{~cm} \\ & =\frac{1}{2} \times 12 \mathrm{~cm}^{2} \\ & =6 \mathrm{~cm}^{2} \end{aligned}$ Area of the triangle is $6 \mathrm{~cm}^{2}$

B. MEASUREMENT - Volume

Calculate volume by counting cubes

We can calculate the volume of objects/shapes by counting cubes.

This cuboid has 4 layers of 8 cubes.

It has a volume of 32 cubes.

If these cubes are 1 cm cubes then the volume of the cuboid is $32 \mathrm{~cm}^{3}$.

Illustration/ Example
 Examples:

Volume of cuboid:
4 layers of 10 cubes
$=4 \times 10$ cubes
$=40$ cubes

The volume of this shape can be calculated like this:
 layer 1: 1 cube layer $2: 2+1=3$ cubes layer $3: 3+2+1=6$ cubes layer 4: $4+3+2+1=10$ cubes

Volume of shape
$=10$ cubes +6 cubes +3 cubes +1 cubes
$=20$ cubes

Calculate the volume of the shape below:
layer 1: $1 \times 4=4$ cubes
layer 2: $2 \times 4=8$ cubes
layer 3: $3 \times 4=12$ cubes
layer 4: $5 \times 4=20$ cubes

Volume of shape $=44$ cubes
Another method of counting:
11 rows of 4 cubes $=44$ cubes
Other suitable methods of counting cubes can be used.

Facts to Remember	Illustration/ Example
Volume is the amount of space that an object	
occupies.	
It is measured in cubic units.	
Volume has three dimensions.	Example:
Cube	Find the volume of a cube with a side of length 10
Cuboid	

Facts to Remember	Illustration/ Example
	Solution:
	Step 1: Find the volume of the aquarium. $\begin{aligned} & =\mathrm{L} \times \mathrm{B} \times \mathrm{H} \\ & =50 \mathrm{~cm} \times 20 \mathrm{~cm} \times 30 \mathrm{~cm}=30000 \mathrm{~cm}^{3} \end{aligned}$
	Step 2: Convert cm^{3} to litres.
	Recall, $1 \mathrm{~L}=1000 \mathrm{~cm}^{3}$
	$6000 \mathrm{~cm}^{3}=\frac{6000}{1000} \mathrm{~L}=6 \mathrm{~L}$
	Answer: The capacity of the aquarium is 6 L .
	Example:
	A drinking glass holds 250 ml of water.
	How many glasses of water are needed to fill a mug having a capacity of 2 litres?
	Solution:
	Recall, $1000 \mathrm{~mL}=1 \mathrm{~L}$
	Capacity of mug in millilitres:
	$2 \mathrm{~L}=2 \times 1000 \mathrm{~mL}=2000 \mathrm{~mL}$
	No. of glasses needed to fill the mug $=\frac{2000 \mathrm{~mL}}{250 \mathrm{~mL}}=8$
	Answer: 8 glasses of water are needed to fill a mug.

B. MEASUREMENT - Mass	
Facts to Remember	Illustration/ Example
The mass of an object refers to how heavy an object can be because of the amount of matter it contains.	Example: What is the weight of the sack of flour in kilograms?
The standard unit of mass in the metric system is the kilogram (kg). The gram (g) is the unit used for measuring very small objects. 1 kilogram = 1000 grams e.g.	
A dictionary has a mass of approximately one kilogram. e.g.	Solution:
	$1 \mathrm{~kg}=1000 \mathrm{~g}$
A paperclip weighs about one gram.	The sack of flour weighs 650 g $650 \mathrm{~g}=\frac{650}{1000}=0.65 \mathrm{~kg}$
	(Recall: To divide by 1000, move the decimal point 3 places to the left)
	Answer: The weight of the sack of flour is 0.65 kg
	Example:
	What is the difference in grams between the masses of the packs of sugar and flour shown below?
	Solution:
	Recall, $1 \mathrm{~kg}=1000 \mathrm{~g}$
	Mass of sugar $=1.7 \mathrm{~kg}=1700 \mathrm{~g}$
	Mass of flour $=1690 \mathrm{~g}$
	$\begin{aligned} \text { Mass of sugar }- \text { mass of flour } & =1700 \mathrm{~g}-1690 \mathrm{~g} \\ & =10 \mathrm{~g} \end{aligned}$
	Answer: 10 g

B. MEASUREMENT - Time	
Facts to Remember	Illustration/ Example
We can convert units of time: $\begin{aligned} & 60 \text { seconds }=1 \text { minute } \\ & 60 \text { minutes }=1 \text { hour } \\ & 24 \text { hours }=1 \text { day } \\ & 7 \text { days }=1 \text { week } \\ & 52 \text { weeks }=1 \text { year } \end{aligned}$ Time is measured using a clock or a watch. a.m. refers to morning. p.m. refers to afternoon, evening and night.	Example: Sam watched a movie that was 150 minutes long. State the length of the movie in hours. Solution: 1 hour $=60$ minutes 150 minutes $=\frac{150}{60}=2 \frac{1}{2}$ hours Answer: The movie was $2 \frac{1}{2}$ hours long.
A clock or watch is called analog when the time is indicated by the positions of rotating hands on the face, and hours marked from 1 to 12. If it has three moving hands, then we can tell the hours, the minutes, and the seconds. If it has two moving hands, then we can tell the hours and the minutes but not the seconds.	Example: Ria and her family arrived at the mall in the afternoon at the time shown on the clock below. They spent $1 \frac{3}{4}$ hours at the mall. What time did Ria and her family leave the mall? Solution: Time shown on the clock is $4: 15$. $1 \frac{3}{4}$ hours later can be calculated as follows: 1 hour later is 5:15 $\frac{3}{4}$ hour later is $5: 15+45$ minutes $=6: 00$ OR Computation can be done as follows: $\begin{aligned} & \mathrm{hr} \min \\ & 4: 15 \\ & 1: 45 \\ & \hline 6: 00 \\ & \hline \end{aligned}+(15 \mathrm{mins}+45 \mathrm{mins}=60 \mathrm{mins}=1 \text { hour })$ Answer: Ria and her family left the mall at 6 p.m.

Facts to Remember	Illustration/ Example
A digital clock displays the time in numerals where the hours, minutes, and sometimes seconds are indicated by digits.	Example:
Write the time shown on the clock in digital notation.	
	Answer: $3: 40$

| C. GEOMETRY - Angles and Lines | Illustration/ Example |
| :--- | :--- | :--- |
| Facts to Remember | |
| An angle is the amount of turn between two | |
| straight lines at a fixed point (the vertex). | |
| Types of angles | |

Facts to Remember	Illustration/ Example
A straight line is the shortest distance between two points.	
Parallel lines are always the same distance apart and will never meet or intersect.	Example:
Perpendicular lines are at right angles $\left(90^{\circ}\right)$ to	
each other.	Example:

C. GEOMETRY - Plane Shapes		
Facts to Remember		
Types of Triangles: A triangle is a three-sided plane shape. A plane or flat shape has two dimensions.		
Name	Shape	Properties
Scalene Triangle		No two sides are equal; No two angles are equal
Isosceles Triangle		Two equal sides; Two equal angles
Equilateral Triangle		Three equal sides; Three equal 60° angles
Right-angled Triangle		A line is perpendicular to another if it meets or crosses it at right angles $\left(90^{\circ}\right)$. A right angled triangle has one 90° angle (right angle). The little square in the corner tells us it is a right-angled triangle.

Facts to Remember

Types of Quadrilaterals:

A quadrilateral is a four-sided plane shape.
A plane or flat shape has two dimensions.

C. GEOMETRY - Solids
Facts to Remember
A solid has three dimensions.
Illustration/ Example
A face is any of the flat or curved surfaces of a
solid.
An edge is where two faces meet.
All solids have one or more edges and faces.
A vertex is a point where three or more edges meet.
The plural of vertex is vertices.
A solid may have no vertex, one vertex or more
than one vertex.

Facts to Remember	Illustration/ Example
Cube	There are 11 nets of a cube
Cuboid	Example: Net of a cuboid
Cylinder	Example: Net of a Cylinder

Facts to Remember

Facts to Remember	Illustration/ Example
Example:	
Net of Rectangular-based Pyramid	
Coneraned Pyramid	

| C. GEOMETRY - Symmetry |
| :--- | :--- | :--- |
| Facts to Remember | Illustration/ Example

D. STATISTICS

Facts to Remember

The Mean is that quantity which represents an even spread for a set of values.

Mean of the numbers 3,8 and 4 is 5 .

$$
\begin{gathered}
\square \begin{array}{r}
\square \\
+\boxed{4} \\
\frac{3+8+4}{3} \\
\frac{3}{3}+\frac{15}{3}=5
\end{array}
\end{gathered}
$$

Mean of the numbers 6, 11 and 7 is 8.

Mean of the numbers 4, 8, 6 and 18 is 9.

$$
\frac{4+8+6+18}{4}=\frac{36}{4}=9
$$

To calculate the mean:

- Add all the numbers.
- Divide by how many numbers that were added.

The Mode refers to the value or item that is most popular or the one which occurs most frequently in a set of data.

Illustration/ Example
 Example:

The table below shows Adam's cricket scores for five days in a week.

Calculate his mean score for that week.

Days of the Week	Cricket Scores
Monday	9
Tuesday	11
Wednesday	17
Thursday	28
Friday	15

Solution:
Mean score $=\frac{9+11+17+28+15}{5}=\frac{80}{5}=16$
Answer: Adam's mean score for that week is 15 .

Example:

The mean of 20 and 10 is the same as the mean of 16 and another number.

What is the other number?

Solution:
Mean of 20 and $10=\frac{20+10}{2}=\frac{30}{2}=15$
If the mean of 16 and another number is 15 , then the total of these two numbers is $15 \times 2=30$.

Since 16 is one of the numbers, the other number is $30-16=14$

Answer: The other number is 14 .

Example:

Find the mode, for the following shirt sizes:
$13,18,13,14,13,16,14,21,13$
Answer: The modal shirt size is 13 .

Facts to Remember	Illustration/ Example				
Frequency Table / Tally Chart	Example:				
	The scores awarded for a test given to a Standard 5 class of 12 students were as follows: $6,7,5,7,7,8,7,6,7,6,8,7$				
	a) Construct a tally chart for the scores. b) Calculate the mean. c) Find the mode.				
	Solution:				
	a)				
	Step 1:				
	Construct a table with three columns. The first column shows what is being tallied.				
	Step 2. ${ }^{\text {2 }}$, $1^{\text {st }}$				
	The $1^{\text {st }}$ score is 6 , so put a tally mark against 6 in the $2^{\text {nd }}$ column. The $2^{\text {nd }}$ score is 7 , so put a tally mark against 7				
	in the $2^{\text {nd }}$ column. The $3^{\text {rd }}$ score is 5 , so put a tally mark against 5 in the $3^{\text {rd }}$ column. Continue to tally all scores. Remember, every $5^{\text {th }}$ tally mark is drawn across the previous 4 tally marks.				
	Step 3:				
	Count the number of tally marks for each score and write it in third column.				
	Answer:				
	Tally of Scores awarded to Students				
	Score	Tally	Frequency		
	5		1		
	6	\|			3
	7	H ${ }^{\text {I }}$	6		
	8	\\|	2		
	Mean $=\underline{6+7+5+7+7+8+7+6+7+6+8+7}$				
	$=\frac{81}{12}=6.75$				
	Answer: The mean score is 6.75 .				
	c) Answer:	Modal	re is 7 .		

Facts to Remember	Illustration/ Example
	c) Answer: 5 students own hamsters d) Answer:
	Pets Owned

Facts to Remember	Illustration/ Example
A Pie Chart uses sectors of a circle to show information. The pie chart represents the whole or 100%	Example: The pie chart represents the sports students play at Excel Primary Academy. 50 students at the school play Netball. a) How many students are there in the school? b) How many students play football? c) If an equal number of students play Hockey and Tennis, what fraction of the students play Hockey? Solution: a) No. of students who play Netball $=50$ Percent of students who play Netball $=25 \%$ 25% of the school population $=50$ students 1% of the school population $=\frac{50}{25}$ students 100% of the school population $=\frac{50}{25} \times \frac{100}{1}$ students $=200 \text { students }$ Answer: There are 200 students in the school b) No. of students who play football $\begin{aligned} & =8 \% \text { of } 200 \text { students } \\ & =\frac{8}{100} \times \frac{200}{1} \text { students } \\ & =16 \text { students } \end{aligned}$ Answer: 16 students play football

Facts to Remember	Illustration/ Example
	c) Percent who play Hockey $=\frac{100 \%-(25 \%+42 \%+8 \%)}{2}$ $=\frac{100 \%-75 \%}{2}$ $=\frac{25 \%}{2}$ $=12.5 \%$
	Fraction of the students who play Hockey
	$=\frac{\text { Percent who play Hockey }}{12.5 \%} 100 \%$
	$=\frac{120 \%}{100 \%}$
	$=\frac{1}{8}$
Answer: $\frac{1}{8}$ of the students play Hockey	

Mathematics Facts

Squares, Roots and Cubes

Square Numbers

$$
\begin{array}{rl}
0^{2} & = \\
1^{2} & = \\
\mathbf{n}^{2} & \mathbf{1} \\
2^{2} & = \\
3^{2} & =\mathbf{9} \\
4^{2} & = \\
\mathbf{1 6} \\
5^{2} & = \\
6^{2} & \mathbf{2 5} \\
7^{2} & = \\
\mathbf{3 6} \\
8^{2} & =\mathbf{4 9} \\
9^{2} & = \\
\mathbf{6 4} \\
10^{2} & =\mathbf{8 1} \\
11^{2} & =\mathbf{1 2 0} \\
12^{2} & = \\
\mathbf{1 4 4} \\
13^{2} & =\mathbf{1 6 9} \\
14^{2} & =\mathbf{1 9 6} \\
15^{2} & =\mathbf{2 2 5} \\
16^{2} & =\mathbf{2 5 6} \\
17^{2} & = \\
\mathbf{2 8 9} \\
18^{2} & =\mathbf{3 2 4} \\
19^{2} & =\mathbf{3 6 1} \\
20^{2} & =\mathbf{4 0 0} \\
30^{2} & =\mathbf{9 0 0} \\
40^{2} & =\mathbf{1 6 0 0} \\
50^{2} & =\mathbf{2 5 0 0}
\end{array}
$$

Square roots

$$
\begin{aligned}
\sqrt{1} & =1 \\
\sqrt{4} & =2 \\
\sqrt{9} & =3 \\
\sqrt{16} & =4 \\
\sqrt{25} & =5 \\
\sqrt{36} & =6 \\
\sqrt{49} & =7 \\
\sqrt{64} & =8 \\
\sqrt{81} & =9 \\
\sqrt{100} & =10 \\
\sqrt{121} & =11 \\
\sqrt{144} & =12 \\
\sqrt{169} & =13 \\
\sqrt{196} & =14 \\
\sqrt{225} & =15
\end{aligned}
$$

Cube Numbers

$$
\begin{aligned}
& 0^{3}= \\
& 1^{3}=\mathbf{0} \\
& 2^{3}= \\
& \mathbf{8} \\
& 3^{3}= \\
& \mathbf{2 7} \\
& 4^{3}= \\
& \mathbf{6 4} \\
& 5^{\mathbf{3}}=\mathbf{1 2 5} \\
& 6^{3}=\mathbf{2 1 6} \\
& 7^{3}=\mathbf{3 4 3} \\
& 8^{3}=\mathbf{5 1 2} \\
& 9^{3}=\mathbf{7 2 9} \\
& 10^{\mathbf{3}}=\mathbf{1 0 0 0}
\end{aligned}
$$

Fraction Wall

1											
$\frac{1}{2}$						$\frac{1}{2}$					
$\frac{1}{3}$				$\frac{1}{3}$				$\frac{1}{3}$			
$\frac{1}{4}$			$\frac{1}{4}$			$\frac{1}{4}$			$\frac{1}{4}$		
	$\frac{1}{5}$	$\frac{1}{5}$			$\frac{1}{5}$		$\frac{1}{5}$		$\frac{1}{5}$		
$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$									
$\frac{1}{7}$		$\frac{1}{7}$	$\frac{1}{7}$		$\frac{1}{7}$		$\frac{1}{7}$		$\frac{1}{7}$	$\frac{1}{7}$	
$\frac{1}{8}$	$\frac{1}{8}$		$\frac{1}{8}$		$\frac{1}{8}$	$\frac{1}{8}$		$\frac{1}{8}$	$\frac{1}{8}$	$\underline{1}$	
$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$		$\frac{1}{9}$	$\frac{1}{9}$		$\frac{1}{9}$	$\frac{1}{9}$	$\frac{1}{9}$		9
$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	- $\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$		$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$	$\frac{1}{10}$
$\frac{1}{11}$	$\frac{1}{11}$	$\frac{1}{11}$	$\frac{1}{11}$	$\frac{1}{11}$	$\frac{1}{11}$		$\frac{1}{11}$	$\frac{1}{11}$	$\frac{1}{11}$	$\frac{1}{11}$	$\frac{1}{11}$
$\frac{1}{12}$	\| $\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$	$\frac{1}{12}$						

Equivalence

Fraction	Decimal	Percent
$\frac{1}{2}$	0.5	50%
$\frac{1}{3}$	$0.333 \ldots$	$33.3 \dot{3} \%$
$\frac{2}{3}$	$0.666 \ldots$	$66.6 \dot{6} \%$
$\frac{1}{4}$	0.25	25%
$\frac{3}{4}$	0.75	75%
$\frac{1}{5}$	0.2	20%
$\frac{2}{5}$	0.4	40%
$\frac{3}{5}$	0.6	60%
$\frac{4}{5}$	0.8	80%
$\frac{1}{8}$	0.125	12.5%
$\frac{3}{8}$	0.375	37.5%
$\frac{5}{8}$	0.625	62.5%
$\frac{7}{8}$	0.875	87.5%
$\frac{1}{10}$	0.1	10%
$\frac{3}{10}$	0.3	30%
$\frac{7}{10}$	0.7	70%
0.9	90%	

Equivalent Fractions

$$
\begin{aligned}
\frac{1}{2}=\frac{2}{4} & =\frac{4}{8}=\frac{5}{10}=\frac{50}{100} \\
\frac{1}{4} & =\frac{2}{8}=\frac{25}{100} \\
\frac{1}{5} & =\frac{2}{10}=\frac{20}{100} \\
\frac{2}{5} & =\frac{4}{10}=\frac{40}{100} \\
\frac{3}{5} & =\frac{6}{10}=\frac{60}{100} \\
\frac{4}{5} & =\frac{8}{10}=\frac{80}{100}
\end{aligned}
$$

Problem Solving involving Money

Cost Price: Price the retailer pays for an item

Selling Price: Price at which the retailer sells an item

A profit is gained when an article is sold for more than what it cost
Profit $=$ Selling Price - Cost Price
Profit \% $=\frac{\text { Profit }}{\text { Cost Price }} \times 100$

$$
=\frac{\text { Selling Price }- \text { Cost Price }}{\text { Cost Price }} \times 100
$$

A loss is made when an article is sold for less than what it cost.
Loss $=$ Cost Price - Selling Price
Loss \% $\quad=\frac{\text { Loss }}{\text { Cost Price }} \times 100$
$=\frac{\text { Cost Price }- \text { Selling Price }}{\text { Cost Price }} \times 100$
Profit and loss are often expressed as percentages of the cost price. They are often called gain or profit percent or loss percent.

A Discount is the difference between the Marked Price and the Selling Price. It is a reduction in the Marked Price.

$$
\begin{aligned}
\% \text { Discount } & =\frac{\text { Discount }}{\text { Marked Price }} \times 100 \\
& =\frac{\text { Marked Price }- \text { Selling Price }}{\text { Marked Price }} \times 100
\end{aligned}
$$

Value Added Tax or V.A.T. is tax on goods and services. It is included in the total cost.
V.A.T. is charged at a rate of 12.5% or $\frac{1}{8}$ of the value of the goods or services.

Plane Shapes and Measures

TRIANGLE

Perimeter: \quad Side + Side + Side

Side: \quad Perimeter $-($ Side + Side $)$
Area: $\quad \frac{\mathrm{B} \times \mathrm{H}}{2} \quad$ OR $\quad \frac{1}{2} \times \mathrm{B} \times \mathrm{H}$

SQUARE

Perimeter:	Side $\times 4$
Side:	Perimeter $\div 4$
Area:	Side \times Side
Side:	$\sqrt{\text { Area }}$

RECTANGLE

Perimeter:	$(\mathrm{L}+\mathrm{B}) \times 2$	OR $\quad 2 \mathrm{~L}+2 \mathrm{~B}$
Area:	$\mathrm{L} \times \mathrm{B}$	
Length:	$\mathrm{A} \div \mathrm{B}$	
Breadth:	$\mathrm{A} \div \mathrm{L}$	

CIRCLE

Circumference: $\quad \mathrm{D} \times \pi$
Diameter:
$C \div \pi$
OR $\quad 2 \times r$
Radius:
$D \div 2$
OR $\quad \frac{1}{2} \times D$
Use $\pi=\frac{22}{7}$

Solids and Measures

CUBE

Volume:	$\mathrm{S} \times \mathrm{S} \times \mathrm{S}$	OR	S^{3}
Side:	$\sqrt[3]{\text { Volume }}$		
Surface Area:	$\mathrm{S} \times \mathrm{S} \times 6$	OR	Area of Face $\times 6$

CUBOID

Volume:	$\mathrm{L} \times \mathrm{B} \times \mathrm{H}$
Length:	$\frac{\text { Volume }}{\mathrm{B} \times \mathrm{H}}$
Breadth:	$\frac{\text { Volume }}{\mathrm{L} \times \mathrm{H}}$
Height:	$\frac{\text { Volume }}{\mathrm{L} \times \mathrm{B}}$

Metric System

Quantity	Unit of measure	Other Units of measure	Conversion of Units
Length	metre (m)	millimetre (mm) centimetre (cm) kilometre (km)	$\begin{aligned} & 10 \text { millimetres }=1 \text { centimetre } \\ & 100 \text { centimetres = } 1 \text { metre } \\ & 1000 \text { metres }=1 \text { kilometre } \end{aligned}$
Mass	gram (g)	kilogram (kg)	1 kilogram = 1000 grams
Area	square metres ($\mathbf{m}^{\mathbf{2}}$)	square centimetres $\left(\mathrm{cm}^{2}\right)$ square kilometres (km^{2})	$\begin{aligned} & 1 \text { square metre }=10000 \\ & \text { square centimetres } \\ & 1 \mathrm{~m}^{2} \\ & =100 \mathrm{~cm} \mathrm{x} 100 \mathrm{~cm} \\ & =10000 \mathrm{~cm}^{2} \end{aligned}$
Volume	cubic metres (m^{3}) (for solids and liquids)	cubic centimetre (cm^{3})	$\begin{aligned} & 1 \text { litre }=1000 \text { millilitres } \\ & 1 \text { millilitre }=1 \mathrm{~cm}^{3} \\ & 1000 \mathrm{ml}=1000 \mathrm{~cm}^{3} \end{aligned}$
	litre (l or L) (for liquids)	millilitre (ml or mL)	
Time	hour (hr)	minute (min), second (s)	1 hour $=60$ minutes 1 minute $=60$ seconds

Strategy for Solving Problems

Step 1: Understand the Problem \mathbf{x} Read the problem carefully.
\mathbf{x} Identify what information you are given (known) and what you are asked to find or show (unknown).
\mathbf{x} Can you restate the problem in your own words?
\mathbf{x} Draw a picture or diagram to help you understand the problem.
\mathbf{x} Is this problem similar to another problem you have solved?

Step 2: Devise A Plan

Step 3: Carry Out The Plan

Step 4: Look Back
\mathbf{x} Carefully examine the solution obtained.
\mathbf{x} Is your answer reasonable?
\mathbf{x} Can you check the results in the reverse order?
\mathbf{x} Have you checked that all the relevant information was used?
\mathbf{x} Are the appropriate units of measure stated? solved.
\mathbf{x} Check each step in your solution as you implement it.
\mathbf{x} Can you see clearly if each step is correct?
\mathbf{x} Can you prove it?
\times Don't be afraid to start over, modify, or change your plan.
x Give yourself a reasonable length of time to solve the problem.
\mathbf{x} Often a considerable amount of creativity is required to develop a plan.

- Look for a Pattern
- Draw a Picture/Diagram
- Use Objects
- Solve a Simpler Problem
- Guess and Check
- Make an Organized List/Table
- Act It Out
- Work Backwards
- Use a Number Sentence
- Use Logical Reasoning
- Implement your chosen strategy/strategies until the problem is
x Are the appront

