Government of the Republic of Trinidad and Tobago

MINISTRY OF EDUCATION
SECONDARY ENTRANCE ASSESSMENT 2019 MATHEMATICS

SPECIMEN PAPER 2

MARK SCHEME

SECTION I

Item No.	Correct Response: 1 mark	Strand
$\mathbf{1 .}$	$\mathbf{3}$ tenths	Number
$\mathbf{2 .}$	$\mathbf{3 0 0 0}$	Number
$\mathbf{3 .}$	$\mathbf{2 4}$	Number
$\mathbf{4 .}$	$\mathbf{1 6 0}$	Number
$\mathbf{5 .}$	$\mathbf{4 0}$	Number
$\mathbf{6 .}$	$\mathbf{1}$	Number
$\mathbf{7 .}$	$\mathbf{\$ 3 0 . 4 0}$	Number
$\mathbf{8 .}$	$\mathbf{1 0 9 6 2}$	Number
cents		

Item No.	Correct Response: 1 mark		Strand
10.	5		Number
11.	11 cm		Measurement
12.	3		Measurement
13.	$12^{\text {th }}$ May		Measurement
14.	1400 millilitres		Measurement
15.	10		Geometry
16.	A		Geometry
17.	24		Geometry
18.	WH X	13	Statistics
19.	Car		Statistics
20.	Mary		Statistics

SECTION II

21. Number

Correct Response: $\mathbf{2}$ marks	Partially Correct Response: $\mathbf{1}$ mark	Incorrect Response: $\mathbf{0}$ mark
$\sqrt{49} \sqrt{25}$	$\bullet \sqrt{49}$ with second missing term incorrect	7,5
	$\bullet \sqrt{25}$ with first missing term incorrect	

22. Number		
Correct Response: $\mathbf{2}$ marks Partially Correct Response: $\mathbf{1}$ mark $125 \div 5=25$ $25 \times 4=100$ Rhoda bought 100 roses. Incorrect Response: $\mathbf{0}$ mark	$125 \div 5=25$	500

23. Number

Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
- $100 \%-33 \frac{1}{3} \%=66 \frac{2}{3} \% \quad$ OR $1-\frac{1}{3}=\frac{2}{3}$ $\frac{2}{3} \times 180=120$ John had 120 marbles remaining. - $33 \frac{1}{3} \%$ of $180=60$ OR $\frac{1}{3} \times 180=60$ $180-60=120$ John had 120 marbles remaining.	- $100 \%-33 \frac{1}{3} \%=66 \frac{2}{3} \%$ OR $1-\frac{1}{3}=\frac{2}{3}$ - $33 \frac{1}{3} \%$ of $180=60$ OR $\frac{1}{3} \times 180=60$ $180-60=$ "His answer" - $33 \frac{1}{3} \%$ of $180=$ "His answer" OR $\frac{1}{3} \times 180=$ "His answer" 180 - "His answer" (follow through)	180-33 $\frac{1}{3}$

24. Number

Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
- No. of Passengers $=\$ 2160 \div \$ 60=36$ No. of 12 -seater maxi-taxis hired $=36 \div 12=3$ - Cost of hiring one maxi-taxi $=\$ 60 \times 12=\$ 720$ No. of 12 -seater maxi-taxis hired $=\$ 2160 \div \$ 720=3$ - Cost of filling a seat on multiple trips by 1 maxi-taxi $=\$ 2160 \div 12=\$ 180$ No. of trips for which each seat is used $=\$ 180 \div \$ 60=3$ No. of trips by one maxi-taxi being used repeatedly is the same as the no. of maxis-taxis needed to make one trip each for hire.	- No. of Passengers $=\$ 2160 \div \$ 60=36$ - No. of 12 -seater maxi-taxis hired $\begin{aligned} & =\$ 2160 \div \$ 720 \\ & =\text { "His answer" } \end{aligned}$ - Cost of filling a seat on multiple trips by 1 maxi-taxi $=\$ 2160 \div 12=\$ 180$	

25. Number		
Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
- 100% profit on cost price $=\$ 3125.00$ Selling price $=$ Cost Price + Profit $=\$ 3125.00+\$ 3125.00=\$ 6250.00$ - Cost of 1 bicycle $=\$ 3125 \div 5=\$ 625$ Selling price of 1 bicycle including 100% profit $=\$ 625 \times 2=\$ 1250$ Selling price of 5 bicycles $=\$ 1250 \times 5=\$ 6250$	- 100% profit $=\$ 3125.00$ - Cost of 1 bicycle $=\$ 3125 \div 5=\$ 625$ Selling price of 1 bicycle including 100% profit $=\$ 625 \times 2=\$ 1250$	- \$3 125×5

26. Number

Correct Response:
3 marks
3 marks

- Fraction of working pens
$=1-\frac{2}{5}=\frac{3}{5}$
Fraction of working red pens
$=\frac{1}{4} \times \frac{3}{5}=\frac{3}{20}$
$\frac{3}{20}$ represents 36 working red pens
$\frac{1}{20}$ represents $36 \div 3=12$
The Whole or $\frac{20}{20}$ represents $12 \times 20=240$
- 36 red pens represent $\frac{1}{4}$ of the working pens

Therefore, the total number of working pens $=36 \times 4=144$
Fraction of working pens out of the total
$=1-\frac{2}{5}=\frac{3}{5}$
144 pens represent $\frac{3}{5}$ of the total pens bought
$\frac{1}{5}$ of the total pens bought
$=144 \div 3=48$
The total number of pens bought
$=48 \times 5=240$

Partially Correct Response:
 2 marks

- Fraction of working pens
$=1-\frac{2}{5}=\frac{3}{5}$
Fraction of working red pens
$=\frac{1}{4} \times \frac{3}{5}=\frac{3}{20}$
$\frac{3}{20}$ represents 36 working red pens
- 36 red pens represent $\frac{1}{4}$ of the working pens

Therefore, the total number of working pens $=36 \times 4=144$
Fraction of working pens out of the total
$=1-\frac{2}{5}=\frac{3}{5}$
144 pens represent $\frac{3}{5}$ of the total pens bought

Partially Correct Response: $\mathbf{1}$ mark	Incorrect Response: 0 mark		
- Fraction of working pens	$\bullet \frac{1}{4}+\frac{2}{5}$		
$=1-\frac{2}{5}=\frac{3}{5}$			Fraction of working red pens
:---			
$=\frac{1}{4} \times \frac{3}{5}=\frac{3}{20}$	• $\frac{1}{4} \times 36$		

$=\frac{1}{4} \times \frac{3}{5}=\frac{3}{20}$

- 36 red pens represent $\frac{1}{4}$ of the working pens
Therefore, the total number of working pens
$=36 \times 4=144$
- Random operations between pairs of numbers that appear in the item

27. Number

Correct Response: 3 marks	Partially Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
Pieces of string used from the roll: $\frac{1}{4}=\frac{6}{24}, \quad \frac{3}{8}=\frac{9}{24}, \quad \frac{7}{24}$ Longest piece: $\frac{9}{24}$, Shortest piece: $\frac{6}{24}$ Difference between the shortest and longest pieces of string used $\begin{aligned} & =\frac{9}{24}-\frac{6}{24} \\ & =\frac{3}{24}=\frac{1}{8} \end{aligned}$	Pieces of string used from the roll: $\frac{1}{4}=\frac{6}{24}, \quad \frac{3}{8}=\frac{9}{24}, \quad \frac{7}{24}$ Longest piece: $\frac{9}{24}$, Shortest piece: $\frac{6}{24}$ Difference between the shortest and longest pieces of string used $\begin{aligned} & =\frac{9}{24}-\frac{6}{24} \\ & =\text { "His answer" } \end{aligned}$	- Pieces of string used from the roll: $\frac{1}{4}=\frac{6}{24}, \frac{3}{8}=\frac{9}{24}, \frac{7}{24}$ - Calculating a difference using only one of the correct fractions and showing the correct "follow through". e.g. $\frac{7}{24}-\frac{6}{24}=\frac{1}{24}$	$\frac{9}{24}+\frac{6}{24}$

| 28. Number | | |
| :--- | :--- | :--- | :--- |
| Correct Response:
 $\mathbf{3}$ marks Partially Correct Response:
 $\mathbf{2}$ marks Partially Correct Response:
 $\mathbf{1}$ mark Incorrect Response:
 $\mathbf{0}$ mark
 Marcy's age: $8 \mathrm{yrs}+10 \mathrm{yrs}=18 \mathrm{yrs}$ - Any two ages correct - Any one age correct No age correct
 Dan's age: $18 \mathrm{yrs}-4 \mathrm{yrs}=14 \mathrm{yrs}$ - "His answer" for Marcy's age
 bat correct follow through for
 Dan's and Patrick's ages. | "His answer" for Marcy's
 and Dan's ages but correct
 follow through for Patrick's
 age. | |

29. Number

Correct Response: 3 marks	Partially Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
- 5 pencils and 5 rulers cost "His answer" 5 pencils and 5 rulers cost $\$ 40$ 10 pencils and 10 rulers cost $\$ 40 \times 2=\$ 80$ - 5 pencils and 5 rulers cost "His answer" 1 ruler and 1 pencil cost $\$ 40 \div 5=\$ 8$ Multiply by 10 to find for ten rulers and ten pencils: $\$ 8 \times 10=\$ 80$ - Guess and Check (or Trial and Error) Method to find cost of one pencil and one ruler, e.g.: Guess for Darren's Supplies: 3 pencils and 2 rulers cost $\$ 19$ $3 \times \underline{3}+2 \times \underline{5}=19$ Cost of one pencil - \$3 Cost of one ruler - \$5 Check for Ann's Supplies $3 \times 2+3 \times 5=\$ 21$ Cost of one pencil and one ruler $=\$ 3+\$ 5=\$ 8$ Cost of 10 pencils and 10 rulers $=\$ 8 \times 10=\$ 80$	- 5 pencils and 5 rulers cost "His answer" 5 pencils and 5 rulers cost $\$ \mathbf{4 0}$ - 5 pencils and 5 rulers cost "His answer" 1 ruler and 1 pencil cost $\$ 40 \div 5=\$ 8$ - Guess and Check (or Trial and Error) Method to find cost of one pencil and one ruler, e.g.: Guess for Darren's Supplies: 3 pencils and 2 rulers cost $\$ 19$ $3 \times \underline{3}+2 \times \underline{5}=19$ Cost of one pencil - \$3 Cost of one ruler - $\$ 5$ Check for Ann's Supplies $3 \times 2+3 \times 5=\$ 21$	- 5 pencils and 5 rulers cost "His answer" - 5 pencils and 5 rulers cost "His answer" - Guess and Check (or Trial and Error) Method to find cost of one pencil and one ruler, e.g.: Guess for Darren's Supplies: 3 pencils and 2 rulers cost $\$ 19$ $3 \times \square+2 \times \square=19$ (incorrect answers for cost of one ruler and cost of one pencil)	

30. Number			
Correct Response: 3 marks	Partially Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
Jabari is correct. The product will be 5 or more if it is multiplied by 1 or any number greater than one. The product will be smaller than 5 if it is multiplied by any number less than 1. e.g. "zero" or "a proper fraction" Note: e.g. "zero" or "a proper fraction" must be given.	- Jabari is correct. Partially correct explanation is given. No example is given. - Jabari is correct. No correct explanation is given. At least one correct example is given.	Jabari is correct. Neither explanation nor example is given.	Alana is correct.

31. Measurement

Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
Correct time on clock: 10:48 Start time: $\begin{array}{rrrrr} 10 & 0 & 4 & 8 \\ - & 1 & : & 5 & 5 \\ \hline 8 & : & 5 & 3 \\ \hline \end{array}$	- Correct time on clock: 10:48 - Subtracting 1:55 from 10:38 correctly $\begin{array}{rrrrr} 10 & 0 & 3 & 8 \\ - & 1 & : 5 & 5 \\ \hline 8 & : & 4 & 3 \\ \hline \end{array}$	- Adding 1:55 to 10:48 $\begin{array}{rrrrr} 1 & 0 & : & 4 & 8 \\ + & 1 & : & 5 & 5 \\ \hline 1 & 2 & : & 4 & 3 \\ \hline \end{array}$ - Adding 1:55 to $10: 38$ $\begin{array}{rrrrr} 1 & 0 & : & 3 & 8 \\ + & 1 & : & 5 & 5 \\ \hline 1 & 2 & : & 3 & 3 \\ \hline \end{array}$

32. Measurement		
Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
- 4 litres $=4000$ millilitres $4000 \div 250=16$ Tariq finishes the 4 litres of sorrel in 16 days. - 1000 millilitres $=1$ litre 250 millilitres $=\frac{1}{4}$ litre $4 \div \frac{1}{4}=16$ Tariq finishes the 4 litres of sorrel in 16 days.	- 4 litres $=4000$ millilitres - 1000 millilitres $=1$ litre 250 millilitres $=\frac{1}{4}$ litre	$250 \div 4$

33. Measurement

Correct Response: 3 marks	Partially Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
Block A weighs 0.94 kg Conversion of grams to kilograms or vice versa Block B weighs 160 g less than Block A: Mass of Block B $=0.94 \mathrm{~kg}-0.16 \mathrm{~kg}$ $=0.78 \mathrm{~kg}$ Block C weighs 700 g more than Block B: Mass of Block C $\begin{aligned} & =0.78 \mathrm{~kg}+0.7 \mathrm{~kg} \\ & =1.48 \mathrm{~kg} \end{aligned}$ Total mass of Blocks A, B and C $\begin{aligned} & =0.94 \mathrm{~kg}+0.78 \mathrm{~kg}+1.48 \mathrm{~kg} \\ & =3.2 \mathrm{~kg} \end{aligned}$ Total mass is 3 kg to the nearest kilogram.	- Block A weighs 0.94 kg Conversion of grams to kilograms or vice versa Block B weighs 160 g less than Block A: Mass of Block B $\begin{aligned} & =0.94 \mathrm{~kg}-0.16 \mathrm{~kg} \\ & =0.78 \mathrm{~kg} \end{aligned}$ Block C weighs 700 g more than Block B: Mass of Block C $=0.78 \mathrm{~kg}+0.7 \mathrm{~kg}$ $=1.48 \mathrm{~kg}$ - Inaccurate answer for mass of Block B or C but accurate addition of all three blocks (follow through)	- Block A weighs 0.94 kg Conversion of grams to kilograms or vice versa Block B weighs 160 g less than Block A Mass of Block B $\begin{aligned} & =0.94 \mathrm{~kg}-0.16 \mathrm{~kg} \\ & =0.78 \mathrm{~kg} \end{aligned}$ - Inaccurate answer for mass of Block B and C but accurate addition of all three blocks (follow through)	$\begin{aligned} & \text { Mass of Block A } \\ & =0.94 \mathrm{~kg}+0.16 \mathrm{~kg} \\ & =1.1 \mathrm{~kg} \end{aligned}$ Mass of Block B $=1.1+0.7=1.8 \mathrm{~kg}$

34. Measurement			
Correct Response: 3 marks	Partially Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
- No. of $15 \mathrm{~cm} \times 15 \mathrm{~cm}$ tiles needed $\begin{aligned} & =90000 \div 225 \\ & =400 \end{aligned}$ No. of boxes needed $\begin{aligned} & =400 \div 40 \\ & =10 \end{aligned}$ Cost of tiles needed $\begin{aligned} & =\$ 50 \times 10 \\ & =\$ 500 \end{aligned}$ No. of $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ tiles needed $\begin{aligned} & =90000 \div 400 \\ & =225 \end{aligned}$ No. of boxes needed $\begin{aligned} & =225 \div 25 \\ & =9 \end{aligned}$ Cost of tiles needed $\begin{aligned} & =\$ 55 \times 9 \\ & =\$ 495 \end{aligned}$ It is $\$ 5$ cheaper to tile the area of the floor using the $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ tile.	- No. of $15 \mathrm{~cm} \times 15 \mathrm{~cm}$ tiles needed $\begin{aligned} & =90000 \div 225 \\ & =400 \end{aligned}$ No. of boxes needed $\begin{aligned} & =400 \div 40 \\ & =10 \end{aligned}$ Cost of tiles needed $\begin{aligned} & =\$ 50 \times 10 \\ & =\$ 500 \end{aligned}$ No. of $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ tiles needed $\begin{aligned} & =90000 \div 400 \\ & =225 \end{aligned}$ No. of boxes needed $\begin{aligned} & =225 \div 25 \\ & =9 \end{aligned}$ Cost of tiles needed $\begin{aligned} & =\$ 55 \times 9 \\ & =\$ 495 \end{aligned}$ No conclusion on which tile is cheaper. - Inaccurate answer for one of the two options but correct conclusion based on working.	Cost of $15 \mathrm{~cm} \times 15 \mathrm{~cm}$ tiles needed with "His answer". Cost of $20 \mathrm{~cm} \times 20 \mathrm{~cm}$ tiles needed with "His answer". Inaccurate answer for both options but correct conclusion based on logical working.	

35. Geometry

Correct Response: $\mathbf{2}$ marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
- 24 tiles were used to cover the hexagon.	Drawing of triangles inside the hexagon but counting inaccurately.	- Drawing of triangles inside the hexagon of different sizes. e.g. Drawing of triangles inside the hexagon but not counting.

37. Geometry

Correct Response: $\mathbf{3}$ marks	Partially Correct Response: $\mathbf{2}$ marks	Partially Correct Response: $\mathbf{1}$ mark	Incorrect Response: $\mathbf{0}$ mark
Triangles B and D are similar.	- Triangles B and D are similar.	Triangles B and D are similar.	• Any other pairs given as similar triangles.
They are both equilateral triangles.	They are both equilateral triangles.		
All their angles are equal.	- Triangles B and D are similar.		
	All their angles are equal.		

38. Statistics

Correct Response: $\mathbf{2}$ marks	Partially Correct Response: $\mathbf{1}$ mark	Incorrect Response: $\mathbf{0}$ mark
Scale: $30 \div 5=6$	\bullet Scale: $30 \div 5=6$	$\bullet 3$
Jeremy's Medals: $6 \times 3.5=21$	\bullet Scale: $30 \div 5=6$	
	Jeremy's Medals: $6 \times 3.5=$ "His answer"	
	• Scale: $30 \div 5=6$	
	Jeremy's Medals: $6 \times 4=24$	

39. Statistics			
Correct Response: 3 marks	Partially Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
- Identify Chocolate - 150 Identify Vanilla - 75 100 strawberry ice-creams were sold. - Eliminating Chocolate and Vanilla as liked most and least, respectively. Deducing that 100 strawberry ice-creams were sold.	- Identify both Chocolate and Vanilla correctly: Chocolate - 150 Vanilla-75 - Eliminating Chocolate and Vanilla as liked most and least, respectively. Making no deduction or a wrong deduction	- Identify either Chocolate or Vanilla correctly: Chocolate - 150 Vanilla-75 - Eliminating either Chocolate as liked most or Vanilla as liked least. Making no deduction or a wrong deduction	$\begin{aligned} & \hline-150 \\ & -75 \\ & -\quad 125 \end{aligned}$

40. Statistics

Correct Response: 3 marks	Partially Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
Before adding 4 more cars, the modal toy is the video games. 4 more cars will increase the number sold (frequency) to 20. However, the video games remain the toy with the highest number sold (frequency) which is 32 . Therefore the modal toy does not change.	Before adding 4 more cars, the modal toy is the video games. 4 more cars will increase the number sold (frequency) to 20. However, the video games remain the toy with the highest number sold (frequency) which is 32 . No conclusion given on the modal toy.	The modal toy is the video games. No explanation given.	The incorrect modal toy selected is the doll, car or board games.

SECTION III

41. Number

Correct Response: 4 marks	Partially Correct Response: 3 marks	Partially Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
No. of the students who borrowed 3 books or more $=63+81=144$ $\frac{3}{5}$ of students $=144$ $\frac{1}{5}=144 \div 3=48$ Total no. of students $=48 \times 5=240$ No. of students not borrowing any book $\begin{aligned} & =240-(34+36+63+81) \\ & =240-214=26 \end{aligned}$	No. of the students who borrowed 3 books or more $=63+81=144$ $\begin{aligned} & \frac{3}{5} \text { of students }=144 \\ & \frac{1}{5}=144 \div 3=48 \end{aligned}$ Total no. of students $=48 \times 5=240$	No. of the students who borrowed 3 books or more $\begin{aligned} & =63+81=144 \\ & \frac{3}{5} \text { of students }=144 \\ & \frac{1}{5}=144 \div 3=48 \end{aligned}$	No. of the students who borrowed 3 books or more $=63+81=144$	

42. Number

Correct Response: 4 marks	Partially Correct Response: 3 marks	Partially Correct Response: $\mathbf{2 ~ m a r k s ~}$	Partially Correct Response: 1 mark	
Rate at time and a half $=\$ 60 \times 1.5=\$ 90$	Rate at time and a half $=\$ 60 \times 1.5=\$ 90$	Rate at time and a half $=\$ 60 \times 1.5=\$ 90$ Overtime wage $=\$ 3480-(\$ 60 \times 40)$ $=\$ 3480-\$ 2400$ $=\$ 1080$	Overtime wage $=\$ 3480-(\$ 60 \times 40)$ $=\$ 3480-\$ 2400$ $=\$ 1080$	Rate at time and a half Overtime wage $=\$ 3480-(\$ 60 \times 40)$ $=\$ 3480-\$ 2400$ mark
Total overtime hours $=1080 \div 90=12$	Total overtime hours $=1080 \div 90=12$			
No. of hours worked on Saturday $=$ Twice the no. worked on Sunday $=(12 \div 3) \times 2$ $=4 \times 2$ $=8$				

43. Measurement

Correct Response: 4 marks	Partially Correct Response: 3marks	Partially Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
Perimeter of Rectangle $=$ Perimeter of Square $=9 \mathrm{~cm} \times 4$ $=36 \mathrm{~cm}$ Rectangle: Length + Width $=$ Perimeter $\div 2$ $=18 \mathrm{~cm}$ Width $=18 \mathrm{~cm} \div 3=6 \mathrm{~cm}$ Length $=6 \mathrm{~cm} \times 2=12 \mathrm{~cm}$ Area of Rectangle $=6 \mathrm{~cm} \times 12 \mathrm{~cm}=72 \mathrm{~cm}^{2}$ Area of Square $=9 \mathrm{~cm} \times 9 \mathrm{~cm}=81 \mathrm{~cm}^{2}$ Difference in areas $\begin{aligned} & =81 \mathrm{~cm}^{2}-72 \mathrm{~cm}^{2} \\ & =9 \mathrm{~cm}^{2} \end{aligned}$	- Perimeter of Rectangle $=$ Perimeter of Square $=9 \mathrm{~cm} \times 4$ $=36 \mathrm{~cm}$ Rectangle: Length + Width $=$ Perimeter $\div 2$ $=18 \mathrm{~cm}$ Width $=18 \mathrm{~cm} \div 3=6 \mathrm{~cm}$ Length $=6 \mathrm{~cm} \times 2=12 \mathrm{~cm}$ Area of Rectangle $=6 \mathrm{~cm} \times 12 \mathrm{~cm}=72 \mathrm{~cm}^{2}$ Area of Square $=9 \mathrm{~cm} \times 9 \mathrm{~cm}=81 \mathrm{~cm}^{2}$ - Correct reasoning with errors in calculation.	Perimeter of Rectangle $=$ Perimeter of Square $=9 \mathrm{~cm} \times 4$ $=36 \mathrm{~cm}$ Rectangle: Length + Width $=$ Perimeter $\div 2$ $=18 \mathrm{~cm}$ Width $=18 \mathrm{~cm} \div 3=6 \mathrm{~cm}$ Length $=6 \mathrm{~cm} \times 2=12 \mathrm{~cm}$	$\begin{aligned} & \text { Perimeter of Rectangle } \\ & =\text { Perimeter of Square } \\ & =9 \mathrm{~cm} \times 4 \\ & =36 \mathrm{~cm} \end{aligned}$	

44. Geometry

45. Statistics

Correct Response: 4 marks	Partially Correct Response: 3marks	Partially Correct Response: 2 marks	Partially Correct Response: 1 mark	Incorrect Response: 0 mark
Mean no. of runs made before the $4^{\text {th }}$ inning $=\frac{80+40+60}{3}=\frac{180}{3}=60$ Mean no. of runs made after the $4^{\text {th }}$ inning $=60+5=65$ Total no. of runs made after the $4^{\text {th }}$ inning $=65 \times 4=260$ No. of runs made in the $4^{\text {th }}$ inning $=260-180$ $=80$	- Mean no. of runs made before the $4^{\text {th }}$ inning $=\frac{80+40+60}{3}=\frac{180}{3}=60$ Mean no. of runs made after the $4^{\text {th }}$ inning $=60+5=65$ Total no. of runs made after the $4^{\text {th }}$ inning $=65 \times 4=260$ - Correct reasoning with errors in calculation	Mean no. of runs made before the $4^{\text {th }}$ inning $=\frac{80+40+60}{3}=\frac{180}{3}=60$ Mean no. of runs made after the $4^{\text {th }}$ inning $=60+5=65$	Mean no. of runs made before the $4^{\text {th }}$ inning $=\frac{80+40+60}{3}=\frac{180}{3}=60$	

